Stochastic Methods (exercises)

Ivan Dimov

1. Find the mathematical expectation and the variance of the random variable (r.v.) η^{2}, where η is a continuous uniformly distributed r.v. (c.u.d.r.v.) in [0, 2].

$$
5 \text { points }
$$

2. Construct an algorithm for generating a discrete r.v. ξ :

$$
\xi=\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right)
$$

where $p_{i}=P\left\{\xi=x_{i}\right\}=\frac{1}{4}$ using a random number $\gamma(\gamma$ is a c.u.d.r.v. in $[0,1]$).
3. Construct a plain Monte Carlo algorithm for computing

$$
I=\int_{0}^{1} \sqrt[5]{x} d x
$$

using a r.v. θ with a constant density function $p(x)=$ const. Show that the variance $D \theta$ is much smaller than I^{2}.
4. Find the mathematical expectation and the variance of the random variable (r.v.) γ^{3}, where γ is a continuous uniformly distributed r.v. (c.u.d.r.v.) in $[0,1]$.

5 points
5. Construct an algorithm for generating a discrete r.v. ξ :

$$
\xi=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
p_{1} & p_{2} & \ldots & p_{n}
\end{array}\right)
$$

where $p_{i}=P\left\{\xi=x_{i}\right\}$ using a random number $\gamma(\gamma$ is a c.u.d.r.v. in $[0,1])$.

5 points
6. Construct a Key sampling Monte Carlo algorithm for

$$
I=\int_{0}^{1} e^{x} d x
$$

Show that the variance of the algorithm $D \theta_{0}$ is zero.
7. For calculating the integral

$$
I=\int_{0}^{1} e^{x} d x
$$

apply Monte Carlo with a r.v. $\theta^{\prime}=f_{1}(x)$ using symmetrization of the integrand: $f_{1}(x)=\frac{1}{2}[f(x)+f(a+b-x)]$. Show that $D \theta^{\prime} \ll I^{2}$.

15 points
8. Consider the integral

$$
I=\int_{0}^{1} f(x) p(x) d x
$$

where $f(x)=e^{x}$ and $p(x)=1, \quad x \in[0,1]$.
a) Find the value of I.
b) Construct a Monte Carlo algorithm using separation of principle part for $h(x)=x$ and show that $E \theta^{\prime}=I$.
c) Show that $D \theta^{\prime} \ll I^{2}$.

20 points
9. Consider the integral

$$
I=\iint_{\Omega}(2-y) d x d y
$$

where $\Omega \equiv\left\{(x, y): 0 \leq x \leq 1 ; 0 \leq y \leq 1+\frac{x}{4}\right\}$. Construct an integration on subdomain Monte Carlo algorithm assuming that

$$
I^{\prime}=\iint_{\Omega^{\prime}}(2-y) d x d y \quad \text { and } \quad c=\iint_{\Omega^{\prime}} p(x, y) d x d y
$$

where $\Omega^{\prime} \equiv\{(x, y): 0 \leq x \leq 1 ; 0 \leq y \leq 1\}$ using a r.v. θ^{\prime} with a constant density function $p(x, y)$ (such that $\iint_{\Omega} p(x, y) d x d y=1$).
Show that:
a) $D \theta^{\prime} \ll I^{2}$;
b) $D \theta^{\prime} \leq(1-c) D \theta$, where θ is the corresponding r.v. for the plain Monte Carlo integration.

25 points

