
STOCHASTIC METHODS:

MONTE CARLO APPROACH

Ivan Dimov

Contents

1 INTRODUCTION 3

2 SOME BASIC FACTS ABOUT MONTE CARLO INTEGRATION 11
2.1 Convergence and Error Analysis of Monte Carlo Algorithms 11
2.2 Integral Evaluation . 13

2.2.1 A plain Monte Carlo algorithm 13
2.2.2 The geometrical Monte Carlo algorithm 14

2.3 Computational Complexity of Monte Carlo Algorithms 14
2.4 Monte Carlo Algorithms with Reduced Error 15

2.4.1 Separation of the principal part 15
2.4.2 Integration on subdomain . 16
2.4.3 Symmetrization of the integrand 17
2.4.4 A key sampling algorithm . 19

2.5 Superconvergent Monte Carlo Algorithms 20
2.6 Random Interpolation Quadrature . 22
2.7 Some Basic Facts about Quasi-Monte Carlo Algorithms 26
2.8 Monte Carlo Algorithms for Continual Integrals, Weight Functions and

Splitting . 28
2.8.1 Continual integrals . 28
2.8.2 Weight functions . 30
2.8.3 Splitting . 30

2.9 Adaptive Monte Carlo Algorithms for Practical Computations 32
2.9.1 Superconvergent adaptive Monte Carlo algorithm and error es-

timates . 33
2.9.2 Implementation of adaptive Monte Carlo algorithms. Numeri-

cal tests . 38
2.9.3 Conclusion . 40

3 SOLVING LINEAR EQUATIONS 43
3.1 Iterative Monte Carlo Algorithms . 44
3.2 Solving Linear Systems and Matrix Inversion 49
3.3 Convergence and Mapping . 52
3.4 A Highly Convergent Algorithm for Systems of Linear Algebraic Equa-

tions . 55
3.4.1 Balancing of the errors . 58

1

2 Ivan Dimov

3.4.2 Estimators . 60
3.5 A New Iterative Monte Carlo Approach for Linear Systems and Matrix

Inversion Problem . 61
3.5.1 Formulation of the problem 61
3.5.2 New iterative Monte Carlo algorithms 63
3.5.3 Discussion of the numerical results 67
3.5.4 Conclusion . 72

3.6 Monte Carlo Algorithms for Computing Eigenvalues 73
3.6.1 Formulation of the problem 74
3.6.2 The Resolvent Monte Carlo algorithm (RMC) 74
3.6.3 The Inverse Monte Carlo Iterative algorithm (IMCI) 78
3.6.4 Numerical tests . 79
3.6.5 Concluding remarks . 90

4 MONTE CARLO ALGORITHMS FOR BOUNDARY-VALUE PROB-
LEMS (BVP) 93
4.1 BVP for Elliptic Equations . 93
4.2 Grid Monte Carlo Algorithm . 94
4.3 Grid-Free Monte Carlo Algorithms 94

4.3.1 Local integral representation 96
4.3.2 Monte Carlo algorithms . 103
4.3.3 Parallel implementation of the grid-free

algorithm and numerical results 112
4.3.4 Concluding remarks . 115

4.4 Adjoint Formulation for Convection-diffusion Problem 116
4.5 Stationary Problem of Particle’s Transport 119
Appendix A. 121
Appendix B. 126
Appendix C. 128

Chapter 1

INTRODUCTION

The Monte Carlo method is a powerful tool in many fields of mathematics, physics and
engineering. It is known that the algorithms based on this method give statistical
estimates for the functional of the solution by performing random sampling of a
certain random variable whose mathematical expectation is the desired functional.

The Monte Carlo method is a method for solving problems using random variables.
In the book [Sh66] edited by Yu.A.Shreider one can find the following definition of
the Monte Carlo method.

Definition 1.0.1 The Monte Carlo method consists of solving various problems of
computational mathematics by means of the construction of some random process for
each such problem, with the parameters of the process equal to the required quantities
of the problem.

Usually Monte Carlo methods reduce problems to the approximate calculation of
mathematical expectations. Let the variable J be the desired solution of the problem
or some desired linear functional of the solution. A random variable ξ with mathe-
matical expectation equal to J must be constructed: Eξ = J . Using n independent
values(realizations) of ξ : ξ1, ξ2, . . . , ξn, an approximation to J

J ≈ 1

n
(ξ1 + ξ2 + . . . + ξn), (1.1)

can then be computed.
There are many algorithms using this essential idea for solving a wide range of

problems.
The year 1949 is generally regarded as the official birthday of the Monte Carlo

method when the paper of Metropolis and Ulam [MU49] was published, although
some authors point to earlier dates. Ermakov [Er75], for example, notes that a so-
lution of a problem by the Monte Carlo method is contained in the Old Testament.
The development of the method is connected with the names of John von Neumann,
E. Fermi and G. Kahn, who worked at Los Alamos (USA) for forty years. The devel-
opment of modern computers, and particularly parallel computing systems, provided
fast and specialized generators of random numbers and gave a new momentum to the
development of Monte Carlo algorithms.

3

4 Ivan Dimov

An important advantage of the Monte Carlo algorithms is that they permit the
direct determination of an unknown functional of the solution, in a given number of
operations, at only one point of the domain [So73], [DT93]. This is very important
for some problems of applied science. Often, one does not need to know the solution
on the whole domain in which the problem is defined. Usually, it is only necessary
to know the value of some functional of the solution. Problems of this kind can be
found in many areas of the applied sciences. For example, in the statistical physics,
one is interested in computing linear functional of the solution of the equations for
density distribution function (such as Boltzmann , Wigner or Schroedinger equation),
i.e., probability of finding a particle at a given point in space and at a given time
(integral of the solution), mean value of the velocity of the particles (the first integral
moment of the velocity) or the energy (the second integral moment of the velocity)
and, so on.

It is well known that Monte Carlo algorithms are very efficient when parallel
processors or parallel computers are available. This is because these algorithms are
inherently parallel and have minimum dependency. In addition, they are also natu-
rally vectorizable when powerful vector machines are used. Nevertheless, the problem
of parallelization of the Monte Carlo algorithms is not trivial because different kinds
of parallelization can be used. To find the most efficient parallelization in order to ob-
tain a high value of the speed-up of the algorithm is an extremely important practical
problem in scientific computing.

Monte Carlo algorithms have proved to be very efficient in solving multidimen-
sional integrals in composite domains [So73], [DT93a], [Ha66]. The problem of eval-
uating integrals of high dimension is important since it appears in many applications
of control theory, statistical physics and mathematical economics. For example one
of the numerical approaches for solving stochastic systems in control theory leads to
a large number of multi-dimensional integrals with dimensionality up to d = 30.

There are two main directions in the development and study of Monte Carlo algo-
rithms. The first is Monte Carlo simulation. Here algorithms are used for simulation
of real-life processes and phenomena. In this case, the algorithms just follow the
corresponding physical, chemical or biological processes under consideration. In such
simulations Monte Carlo is used as a tool for choosing one of many different possible
outcomes of a particular process. For example, Monte Carlo simulation is used to
study particle transport in some physical systems. Using such a tool one can simulate
the probabilities for different interactions between particles, as well as the distance
between two interactions, the direction of their movement and other physical para-
meters. Thus, Monte Carlo simulation could be considered as a method for solving
probabilistic problems using some kind of simulations of random variables or random
fields.

The second direction is Monte Carlo numerical algorithms. Monte Carlo numerical
algorithms are usually used for solving deterministic problems by modeling random
variables or random fields. The main idea here is to construct some artificial random
process and to prove that the mathematical expectation of the process is equal to the
unknown solution of the problem or to some functional of the solution. Usually, there
are more than one possible way to create such an artificial process. After finding

Monte Carlo Methods 5

such a process one needs to define an algorithm for computing realizations of the
random variable. Usually, the random variable can be considered as a weight of a
random process (usually, a Markov process). Then, the Monte Carlo algorithm for
solving the problem under consideration consists in simulating the Markov process
and computing the realizations of the random variables.

Here the following important problems arise:

• How to define the random process for which the mathematical expectation is
equal to the unknown solution?

• How to estimate the statistical error?

• How to choose the random process in order to achieve high computational ef-
ficiency in solving the problem with a given statistical accuracy (for a priori
given probable error)?

This course will be primary concerned with Monte Carlo numerical algorithms.
Moreover, we shall focus on the performance analysis of the algorithms under con-
sideration on different parallel and pipeline (vector) machines. The general approach
we take is the following

• Define the problem under consideration and give the conditions which need to
be satisfied to obtain a unique solution.

• Construct a random process and prove that such a process can be used for
obtaining the approximate solution of the problem.

• Estimate the probable error of the method.

• Try to find the optimal (in some sense) algorithm, that is to choose the random
process for which the statistical error is minimal.

• Choose the parameters of the algorithm (such as the number of the realizations
of the random variable, the length (number of states) of the Markov chain
and, so on) in order to provide a good balance between the statistical and the
systematic errors.

• Obtain a priori estimates for the speed-up and the parallel efficiency of the
algorithm when parallel or vector machines are used.

Let us introduce some notations and definitions used in the course:

By x = (x(1), x(2), . . . , x(d)) we denote a point in the domain Ω, Ω ⊂ IRd, where
IRd is d-dimensional Euclidean space. The d-dimensional unite cube is denoted by
Cd = [0, 1]d.

By f(x), h(x), u(x), g(x) we denote functions of d variables belonging to some
functional spaces. The inner product of functions h(x) and u(x) is denoted by (h, u) =

6 Ivan Dimov

∫
Ω h(x)u(x)dx. J(u) denotes a linear functional of u. If X is some Banach space and

u ∈ X, then u∗ is the conjugate function belonging to the dual space X∗. The space
of functions continuous on Ω are denoted by C(Ω). C(k)(Ω) is the space of functions
u for which u(k) ∈ C(Ω). As usual ‖ f ‖Lq= (

∫
Ω f q(x)p(x)dx)1/q denotes the Lq-norm

of f(x).

Definition 1.0.2 Hα(M, Ω) is the space of functions for which |f(x) − f(x′)| ≤
M |x− x′|α.

We also use the Wr
q-norm, which is defined as follows:

Definition 1.0.3 Wr(M ; Ω) is a a class of functions f(x), continuous on Ω with
partially continuous rth derivatives, such that

|Drf(x)| ≤ M,

where
Dr = Dr1

1 . . . Drd
d

is the rth derivative, r = (r1, r2, . . . , rd), |r| = r1 + r2 + . . . + rd, and

Di =
∂

∂x(i)

.

Definition 1.0.4 The Wr
q-norm is defined as:

‖ f ‖r
Wq

= [
∫
Ω(Drf(x))qp(x)dx]1/q.

We use the notation L for a linear operator. Very often L is a linear integral
operator or a matrix.

Definition 1.0.5 Lu(x) =
∫
Ω l(x, x′)u(x′)dx′ is an integral transformation (L is an

integral operator)

A ∈ IRm×m or L ∈ IRm×m are matrices of size m ×m; aij or lij are elements in
the ith row and jth column of the matrix A or L and Au = f is a linear system of
equations. The transposed vector is denoted by xT . Lk is the kth iterate of the matrix
L.

(h, u) =
∑m

i=1 hiui is the inner product of the vectors h = (h1, h2, . . . , hm) and
u = (u1, u2, . . . , um)T .

The probability that εk = i will be denoted by Pr{εk = i}, while the random
variable (r.v.) will be denoted by θ(ξ).

Monte Carlo Methods 7

The mathematical expectation of the r.v. θ will be denoted by E(θ) (sometimes
abbreviated to Eθ); the variance by D(θ) (or Dθ) and the standard deviation by σ(θ)
(or σθ). We shall let γ denote the random number, that is a uniformly distributed r.v.
in [0, 1] with E(γ) = 1/2 and D(γ) = 1/12). We shall further denote the realizations
(values) of the random points ξ or By ξi(i = 1, 2, . . . , n) we denote the realizations of
the random point ξ or θ by ξi, θ(i = 1, 2, . . . , n) respectively. The density (frequency)
function will be denoted by p(x) and the transition density function by p(x, y). F (x)
will denote the distribution function. Finally the mean value of n realizations of the
r.v. ξ will be denoted by

ξn =
1

n

n∑

i=1

ξi.

Definition 1.0.6 If J is the exact solution of the problem, then the probable error
rn is the value for which:

Pr
{
|ξn − J | ≤ rn

}
=

1

2
= Pr

{
|ξn − J | ≥ rn

}
.

The computational problem in Monte Carlo algorithms becomes one of calculat-
ing repeated realizations of the r.v. θ and of combining them into an appropriate
statistical estimator of the functional J(u) or solution. Every realization of θ is a
Markov process. We shall consider only discrete Markov processes with a finite set of
states, the so-called finite discrete Markov chains.

Definition 1.0.7 A finite discrete Markov chain Ti is defined as a finite set of
states {k1, k2, ..., ki}.

At each of the sequence of times t = 0, 1, . . . , i, . . . the system Ti is in one of the
following states kj. The state kj determines a set of conditional probabilities pjl, such
that pjl is the probability that the system will be in the state kl at the (τ + 1)th time
given that it was in state kj at time τ . Thus, pjl is the probability of the transition
kj ⇒ kl. The set of all conditional probabilities pjl defines a transition probability
matrix

P = {pjl}i
j,l=1,

which completely characterizes the given chain Ti.

Definition 1.0.8 A state is called absorbing if the chain terminates in this state
with probability one.

In the general case, iterative Monte Carlo algorithms can be defined as terminated
Markov chains:

T = kt0 → kt1 → kt2 → . . . → kti , (1.2)

8 Ivan Dimov

where ktq , (q = 1, . . . , i) is one of the absorbing states. This determines the value
of some function F (T) = J(u), which depends on the sequence (1.2). The function
F (T) is a random variable. After the value of F (T) has been calculated, the system
is restarted at its initial state kt0 and the transitions are begun anew. A number of
n independent runs are performed through the Markov chain starting from the state
st0 to any of the absorbing states. The average

1

n

∑

T

F (T) (1.3)

is taken over all actual sequences of transitions (1.2). The value in (1.3) approximates
E{F (T)}, which is the required linear form of the solution.

We also will be interested in computational complexity.

Definition 1.0.9 Computational complexity is defined by

Sn = nE(q)t0,

where E(q) is the mathematical expectation of the number of transitions in the se-
quence (1.2) and t0 is the mean time needed for realization of one transition.

In practice, the definition of computational complexity is only used for obtaining
theoretical estimates, because one can only estimate the mathematical expectation
of the number of transitions q. Now if for the sth realization of a Markov chain there
are qs transitions then the total number of transitions for n realizations is N , where

N =
n∑

s=1

qs. (1.4)

Suppose there exists different Monte Carlo algorithms to solve a given problem.
The computational effort for the achievement of a preset probable error is proportional
to tσ2(θ), where t is the expectation of the time required to calculate one realization
of the random variable θ. The product tσ2(θ) may be considered as computational
complexity, whereas [tσ2(θ)]−1 is a measure for the computational efficiency. In these
terms the optimal Monte Carlo algorithm is the algorithm with the lowest computa-
tional complexity (or the algorithm with the highest computational efficiency).

Let us now consider a simple example of evaluating multi-dimensional integrals
which demonstrates the power of the Monte Carlo algorithms. Consider the classical
problem of integral evaluation. Suppose f(x) is a continuous function and let a
quadrature formula of Newton or Gauss type be used for calculating the integrals.
Consider an example with d = 30 (this is a typical number for some applications in
control theory, statistical physics and mathematical economics). In order to apply
such formulae, we generate a grid in the d-dimensional domain and take the sum (with
the respective coefficients according to the chosen formula) of the function values in
the grid points. Let a grid be chosen with 10 nodes on the each of the coordinate

Monte Carlo Methods 9

axes in the d-dimensional cube Ω = Cd = [0, 1]d. In this case we have to compute
about 1030 values of the function f(x).

Suppose a time of 10−7 s is necessary for calculating one value of the function.
Therefore, a time of order 1023 s will be necessary for evaluating the integral (let
us remind that 1 year = 31536.103s, and that there has been less than 9.1010s since
the birth of Pythagoras). Suppose the calculations have been done for a function
f(x) ∈ W (2)(M ; [0, 1]d). If the formula of rectangles (or some similar formula) is
applied then the error in the approximate integral calculation is

ε ≤ cMh3, (h = 0.1), (1.5)

where h is the mesh-size and c is a constant independent of h.
Consider a Monte Carlo algorithm for this problem with a probable error ε of the

same order. We have to generate n random points in Ω and to calculate the values
of f(x) at these points. For each uniformly distributed random point in Ω we have
to generate 30 random numbers uniformly distributed in [0, 1].

To apply the Monte Carlo method it is sufficient that f(x) is continuous. The
probable error is:

ε ≤ 0.6745σ(θ)
1√
n

, (1.6)

where σ(θ) = (Dθ)1/2 is the standard deviation of the random variable θ for which:

Eθ =
∫

Ω
f(x)p(x)dx;

n is the number of the realizations of the random variable (in this case it coincides
with the number of random points generated in Ω).

We can estimate the probable error using the variance properties:

ε ≤ 0.6745σ(θ)
1√
n

≈ 0.6745

(∫

Ω
f 2(x)p(x)dx−

(∫

Ω
f(x)p(x)dx

)2
)1/2

1√
n

≤ 0.6745
(∫

Ω
f 2(x)p(x)dx

)1/2 1√
n

= 0.6745 ‖ f ‖L2

1√
n

.

In this case, the estimate simply involves the L2-norm of the integrand.
The computational complexity of this commonly-used Monte Carlo algorithm will

now be estimated. From (1.5) (1.6), we may conclude:

n ≈
(

0.6745 ‖ f ‖L2

cM

)2

× h−6.

Suppose that the expression in front of h−6 is of order 1. (For many problems it
is significantly less than 1 as M is often the maximal value of the second derivative;

10 Ivan Dimov

further the Monte Carlo algorithm can be applied even when it is infinity). For our
example (h = 0.1), we have

n ≈ 106;

hence, it will be necessary to generate 30 × 106 = 3.107 pseudo random numbers
(PRN). Usually, two operations are sufficient to generate a single PRN. Suppose that
the time required to generate one PRN is the same as that for calculating the value of
the function at one point in the domain Ω. Therefore, in order to solve the problem
with the same accuracy, a time of

3.107 × 2× 10−7 ≈ 6 s

will be necessary. The advantage of employing Monte Carlo algorithms to solve
such problems is obvious. The above result may be improved if additional realistic
restrictions are placed upon the integrand f(x).

It is known that for some problems (including one-dimensional problems) Monte
Carlo algorithms have better convergence rates than the optimal deterministic algo-
rithms in the appropriate function spaces [Ni88], [SAK94], [Ba64], [DT89], [DT93].

For example, as it will be shown in Sections 2.5 and 2.9 if f(x) ∈ W 1(M ; [0, 1]d),
then instead of (1.6) we have

ε ≤ c1M
1

n1/2+1/d
, (1.7)

where c1 is a constant independent of n and d.

Chapter 2

SOME BASIC FACTS ABOUT
MONTE CARLO INTEGRATION

It this chapter some basic facts about Monte Carlo integration are considered. Almost
all facts presented here are well known to scientists dealing with Monte Carlo algo-
rithms. Nevertheless, this exposition facilitates the understanding of the algorithms
discussed in the course. In this chapter we present results from basic works on the
theory of Monte Carlo algorithms [Cu54], [Cu56], [Du56], [EM82], [HH64], [Ka50],
[MU49], [Mi87], [Sa89], [So73].

2.1 Convergence and Error Analysis of Monte Carlo

Algorithms

Let ξ be a random variable for which a mathematical expectation of Eξ = I exists.
Let us formally define

Eξ =

∫∞
−∞ ξp(ξ)dξ, where

∫∞
−∞ p(x)dx = 1, when ξ is a continuous

random variable;∑
ξ ξp(ξ), where

∑
x p(x) = 1, when ξ is a discrete

random variable.

By definition Eξ exists if and only if E|ξ| exists. The nonnegative function p(x)
(continuous or discrete) is called the probability density function.

To approximate the variable I, a computation of the arithmetic mean must usually
be carried out,

ξn =
1

n

n∑

i=1

ξi.

For a sequence of uniformly distributed independent random variables, for which
a mathematical expectation exists, the Hinchin theorem (the minimum of large num-

11

12 Ivan Dimov

bers) (Kramer [1948]) is valid. This means that the arithmetic mean of these variables
converges to the mathematical expectation when

ξn
p→ I as n →∞

(the sequence of the random variables η1, η2, . . . , ηn, . . . converges to the constant c if
for every h > 0 it follows that

lim
n→∞P{|ηn − c| ≥ h} = 0.)

Thus, when n is sufficiently large

ξn ≈ I (2.1)

and (1.1) may be used whenever Eξ = I exists.
Let us consider the problem of estimating the error of the algorithm. Suppose

that the random variable ξ has a finite variance

Dξ = E(ξ − Eξ)2 = Eξ2 − (Eξ)2.

It is well known that the sequences of the uniformly distributed independent ran-
dom variables with finite variances satisfy the central limit theorem (see Hammersley
and Handscomb [HH64]). This means that for arbitrary x1 and x2

lim
n→∞P

{
x1 <

1√
nDξ

n∑

i=1

(ξi − I) < x2

}
=

1√
2π

∫ x2

x1

e−
t2

2 dt. (2.2)

Let x2 = −x1 = x. Then from (2.2) it follows that

lim
n→∞P

∣∣∣∣∣
1

n

n∑

i=1

(ξi − I)

∣∣∣∣∣ < x

√
Dξ

n

 = Φ(x),

where Φ(x) =
2√
2π

∫ x

0
e−

t2

2 dt is the probability integral.

When n is sufficiently large

P

|ξn − I| < x

√
Dξ

n

 ≈ Φ(x). (2.3)

Formula (2.3) gives a whole family of estimates, which depend on the parameter
x. If a probability β is given then the root x = xβ of the equation

Φ(x) = β

can be found, e.g., approximately using statistical tables.
Then from (2.3) it follows that the probability of the inequality

|ξn − I| < xβ

√
Dξ

n
(2.4)

Monte Carlo Methods 13

is approximately equal to β.
The term on the right-hand side of the inequality (2.4) is called the probability

error.
The symbol rn is often used to denote the probable error. This is the value rn for

which

Pr
{
|ξn − I| ≤ rn

}
=

1

2
= Pr

{
|ξn − I| ≥ rn

}
. (2.5)

From (2.5) it follows that

rn = x0.5σ(ξ)n−
1
2 , (2.6)

where σ(ξ) = (Dξ)
1
2 is the standard deviation and x0.5 ≈ 0.6745.

2.2 Integral Evaluation

2.2.1 A plain Monte Carlo algorithm

Let Ω be an arbitrary domain (bounded or unbounded, connected or unconnected)
and let x ∈ Ω ⊂ IRd be a d-dimensional vector.

Let us consider the problem of the approximate computation of the integral

I =
∫

Ω
f(x)p(x)dx, (2.7)

where the non-negative function p(x) is called the density function if
∫

Ω
p(x)dx = 1.

(Note that every integral
∫

Ω
f(x)dx, when Ω is a bounded domain, is an integral of

the kind (2.7). In fact, if SΩ is the area of Ω, then p1(x) ≡ 1
SΩ

is the probability density
function of a random point which is uniformly distributed in Ω. Let us introduce the

function f1(x) = SΩf(x). Then, obviously,
∫

Ω
f(x)dx =

∫

Ω
f1(x)p1(x)dx.)

Let x be a random point with probability density function p(x). Introducing the
random variable θ = f(x) with mathematical expectation equal to the value of the
integral I, then

Eθ =
∫

Ω
f(x)p(x)dx.

Let x1, x2, . . . , xn be independent realizations of the random point x with prob-
ability density function p(x) and θ1 = f(x1), . . . , θn = f(xn). Then an approximate
value of I is

θn =
1

n

n∑

i=1

θi. (2.8)

14 Ivan Dimov

According to Section 2.1, if the integral (1.1) were absolutely convergent, then θn

would be convergent to I.

2.2.2 The geometrical Monte Carlo algorithm

Let the nonnegative function f be bounded, i.e.,

0 ≤ f(x) ≤ c for x ∈ Ω, (2.9)

where c is a generic constant.
Consider the cylindrical domain

Ω̃ = Ω× [0, c]

and the random point x̃ ≡ (x(1), x(2), x(3)) ⊂ Ω̃ with the following probability density
function:

p̃(x) =
1

c
p(x(1), x(2)).

Let x̃1, . . . , x̃n be independent realizations of the random point x̃. Introduce the
random variable θ̃, whose dependency on x̃ is clear,

θ̃ =

{
c, if x(3) < f(x(1), x(2))
0, if x(3) ≥ f(x(1), x(2)).

The random variable introduced is a measure of the points below the graph of the
function f . Let us calculate Eθ̃:

Eθ̃ = cPr{x(3) < f(x)} =
∫

Ω
dx(1)dx(2)

∫ f(x(1),x(2))

0
p̃(x(1), x(2), x(3))dx(3) = I.

The absolute convergence of the integral follows from (2.9). Therefore,

θ̃n =
1

n

n∑

i=1

θ̃i

can be used as an approximation to I, since Eθ̃n = I and θ̃n
p→ I.

2.3 Computational Complexity of Monte Carlo Al-

gorithms

Let us compare the accuracy of the geometrical and the plain Monte Carlo algorithm.
Let f ∈ L2(Ω, p). This guarantees that the variance

Monte Carlo Methods 15

Dθ̃ =
∫

Ω
f 2(x)p(x)dx− I2

in a plain Monte Carlo algorithm is finite.
For the geometrical Monte Carlo algorithm the following equation holds

E(θ̃2) = c2P{x(3) < f(x)} = cI.

Hence the variance is

Dθ̃ = cI − I2,

and ∫

Ω
f 2(x)p(x)dx ≤ c

∫

Ω
f(x)p(x)dx = cI.

Therefore Dθ ≤ Dθ̃.
The last inequality shows that the plain Monte Carlo algorithm is more accurate

than the geometrical one (except for the case when the function f is a constant).
Nevertheless, the geometrical algorithm is often preferred from the algorithmic point
of view, because its computational complexity is less than the computational com-
plexity of the plain algorithm [So73]. The problem of the computational complexity
of different Monte Carlo algorithms is considered in detail in [DT93a].

2.4 Monte Carlo Algorithms with Reduced Error

As has been shown, the probable error in Monte Carlo algorithms when no information
about the smoothness of the function is used is

rn = c

√
Dξ

n
.

It is important for such computational schemes and random variables that a value
of ξ is chosen so that the variance is as small as possible. Monte Carlo algorithms
with reduced variance compared to plain Monte Carlo algorithms are usually called
efficient Monte Carlo algorithms. Let us consider several algorithms of this kind.

2.4.1 Separation of the principal part

Consider again the integral

I =
∫

Ω
f(x)p(x)dx, (2.10)

where f ∈ L2(Ω, p), x ∈ Ω ⊂ IRd.

16 Ivan Dimov

Let the function h ∈ L2(Ω, p) be close to f with respect to the L2 norm; i.e.
‖f − h‖L2 ≤ ε, and the value of the integral

∫

Ω
h(x)p(x)dx = I ′

be known.
The random variable θ′ = f(x) − h(x) + I ′ generates the following estimate for

the integral (2.10)

θ′n = I ′ +
1

n

n∑

i=1

[f(xi)− h(xi)].

Obviously Eθ′n = I. A possible estimate of the variance of θ′ is

Dθ′ =
∫

Ω
[f(x)− h(x)]2p(x)dx− (I − I ′)2 ≤ ε2.

This means that the variance and the probable error can be quite small, if the
function h is such that the integral I ′ can be calculated analytically. The function h
is often chosen to be piece-wise linear function.

2.4.2 Integration on subdomain

Let us suppose that it is possible to calculate the integral analytically on Ω′ ⊂ Ω and

∫

Ω′
f(x)p(x)dx = I ′,

∫

Ω′
p(x)dx = c,

where 0 < c < 1.
Then the integral (2.10) can be represented as

I =
∫

Ω1

f(x)p(x)dx + I ′,

where Ω1 = Ω− Ω′.
Let us define in Ω1 a random point x′ with probability density function p1(x) =

p(x′)/(1− c) and a random variable

θ′ = I ′ + (1− c)f(x′).

Obviously Eθ′ = I . Therefore, the following approximate estimator can be used
to compute I

θ′n = I ′ +
1

n
(1 + c)

n∑

i=1

f(x′i),

where x′i are independent realizations of the d-dimensional random point x′.
The next theorem compares the accuracy of this Monte Carlo algorithm with the

plain Monte Carlo.

Monte Carlo Methods 17

Theorem 2.4.1 (Sobol [So73]). If the variance Dθ exists then

Dθ′ ≤ (1− c)Dθ.

P r o o f. Let us calculate the variances of θ and θ′

Dθ =
∫

Ω
f 2p dx− I2 =

∫

Ω1

f 2p dx +
∫

Ω′
f 2p dx− I2; (2.11)

Dθ′ = (1− c)2
∫

Ω1

f 2p1 dx− [(1− c)
∫

Ω1

fp1 dx]2

= (1− c)
∫

Ω1

f 2p dx−
(∫

Ω1

fp dx
)2

. (2.12)

Multiplying both sides of (2.11) by (1− c) and subtracting the result from (2.12)
yields

(1− c)Dθ −Dθ′ = (1− c)
∫

Ω′
f 2p dx− (1− c)I2 − (I − I ′)2.

Using the nonnegative value

b2 ≡
∫

Ω′

(
f − I ′

c

)2

p(x)dx =
∫

Ω′
f 2p dx− I ′2

c
,

one can obtain the following inequality

(1− c)Dθ −Dθ′ = (1− c)b2 + (
√

cI ′ − I ′/
√

c)2 ≥ 0

and the theorem is proved. ♦

2.4.3 Symmetrization of the integrand

For a one-dimensional integral

I0 =
∫ b

a
f(x)dx

on a finite interval [a, b] let us consider the random variables ξ (uniformly distributed
in this interval) and θ = (b−a)f(ξ). Since Eθ = I0, the plain Monte Carlo algorithm
leads to the following approximate estimate for I0:

θn =
b− a

n

n∑

i=1

f(ξi),

where ξi are independent realizations of ξ.
Consider the symmetric function

18 Ivan Dimov

f1(x) =
1

2
[f(x) + f(a + b− x)],

the integral of which over [a, b] is equal to I0. Let also θ′ = (b− a)f1(x).
Since Eθ′ = I0, the following symmetrized approximate estimate of the integral

may be employed:

θn =
b− a

n

n∑

i=1

[f(ξi) + f(a + b− ξi)].

Theorem 2.4.2 (Sobol [So73]). If the partially continuous function f is monotonic
in the interval a ≤ x ≤ b, then

Dθ′ ≤ 1

2
Dθ.

P r o o f. The variances of θ and θ′ may be expressed as

Dθ = (b− a)
∫ b

a
f 2(x)dx− I2

0 , (2.13)

2Dθ′ = (b− a)
∫ b

a
f 2dx + (b− a)

∫ b

a
f(x)f(a + b− x)dx− I2

0 . (2.14)

From (2.13) and (2.14) it follows that the assertion of the theorem is equivalent
to establishing the inequality

(b− a)
∫ b

a
f(x)f(a + b− x)dx ≤ I2

0 . (2.15)

Without loss of generality suppose that f is nondecreasing and f(b) > f(a) and
introduce the function

v(x) = (b− a)
∫ x

a
f(a + b− t)dt− (x− a)I0,

which is equal to zero at the points x = a and x = b. The derivative of v

v′(x) = (b− a)f(a + b− x)− I0

is monotonic and since

v′(a) > 0, v′(b) < 0, we see that v(x) ≥ 0

for x ∈ [a, b]. Obviously,

∫ b

a
v(x)f ′(x)dx ≥ 0. (2.16)

Thus integrating (2.16) by parts, one obtains

Monte Carlo Methods 19

∫ b

a
f(x)v′(x)dx ≤ 0. (2.17)

Now (2.15) follows by replacing the expression for v′(x) in (2.17). (The case of a
non-increasing function f can be treated analogously.) ♦

2.4.4 A key sampling algorithm

Consider the problem of computing

I0 =
∫

Ω
f(x)dx, x ∈ Ω ⊂ IRd.

Let Ω0 be the set of points x for which f(x) = 0 and Ω+ = Ω− Ω0.

Definition 2.4.1 Define the probability density function p(x) to be tolerant to f(x),
if p(x) > 0 for x ∈ Ω+ and p(x) ≥ 0 for x ∈ Ω0.

For an arbitrary tolerant probability density function p(x) for f(x) in Ω let

θ0(x) =

{
f(x)
p(x)

, x ∈ Ω+,

0, x ∈ Ω0.

The following problem arises: find the tolerant density p(x) which minimises the
variance of θ0?

Theorem 2.4.3 (Kahn [Ka50]). The probability density function p̂ = c|f(x)| min-
imises Dθ0 and the value of the minimum variance is

Dθ̂0 =
[∫

Ω
|f(x)|dx

]2

− I2
0 .

P r o o f. Let us note that the constant in the expression for p̂(x) is

c =
[∫

Ω
|f(x)|dx

]−1

,

because the condition for normalisation of probability density must be satisfied. At
the same time

Dθ0 =
∫

G+

f 2(x)

p(x)
dx + I2

0 = Dθ̂0.

It is necessary only to prove that for other tolerant probability density functions
the inequality p(x)Dθ0 ≥ Dθ̂0 holds. Indeed

20 Ivan Dimov

[∫

Ω
|f(x)|dx

]2

=

[∫

Ω+

|f |dx

]2

=

[∫

Ω+

|f |p−1/2p1/2dx

]2

≤
∫

Ω+

f 2p−1dx
∫

Ω+

p dx ≤
∫

Ω+

f 2

p
dx.

♦
Corollary: If f does not change sign in Ω, then Dθ̂0 = 0.
This is clear.
For practical algorithms this assertion allows random variables with a small vari-

ances (and consequently small probable errors) to be incurred, using a higher random
point probability density in subdomains of Ω, where the integrand has a large ab-
solute value. It is intuitively clear that the use of such an approach should increase
the accuracy of the algorithm.

2.5 Superconvergent Monte Carlo Algorithms

As was shown earlier, the probable error usually has the form of (2.6) and the speed
of convergence can be increased if an algorithm with a probable error

rn = cn−1/2−ε(d)

can be constructed, where c is a constant, ε(d) > 0 and d is the dimension of the
space.

Monte Carlo algorithms with such a probable error are called Monte Carlo algo-
rithms with a superconvergent probable error.

Let us consider the problem of computing the integral

I =
∫

Ω
f(x)p(x)dx,

where Ω ∈ IRd, f ∈ L2(Ω; p) and p is a probability density function, i.e. p(x) ≥ 0

and
∫

Ω
p(x)dx = 1.

Let Ω be the unit cube

Ω = Cd = {0 ≤ x(i) < 1; i = 1, 2, . . . , d}.
Let p(x) ≡ 1 and consider the partition of Ω into the subdomains Ωj, j =

1, 2, . . . , m, of n = md equal cubes with edge 1/m (evidently pj = 1/n and dj =√
d/m) so that the following conditions hold:

Ω =
m⋃

j=1

Ωj, Ωi ∩ Ωj = ∅, i 6= j,

Monte Carlo Methods 21

pj =
∫

Ωj

p(x)dx ≤ c1

n
, (2.18)

and

dj = sup
x1,x2∈Ωj

|x1 − x2| ≤ c2

n1/d
, (2.19)

where c1 and c2 are constants.

Then I =
m∑

j=1

Ij, where Ij =
∫

Ωj

f(x)p(x)dx and obviously Ij is the mean of the

random variable pjf(ξj), where ξj is a random point in Ωj with probability density
function p(x)/pj. So it is possible to estimate Ij by the average of nj observations

θn =
pj

nj

nj∑

s=1

f(ξj),
m∑

j=1

nj = n,

and I by θ∗n =
m∑

j=1

θnj
.

Theorem 2.5.1 (Dupac [Du56], Haber [Ha66]).
Let nj = 1 for j = 1, . . . , m (so that m = n). The function f has continuous and

bounded derivatives
(∣∣∣∣ ∂f

∂x(k)

∣∣∣∣ ≤ L for every k = 1, 2, . . . , d
)

and let there exist con-

stants c1, c2 such that conditions (2.18) and (2.19) hold.
Then for the variance of θ∗ the following relation is fulfilled

Dθ∗n = (dc1c2L)2n−1−2/n.

Using the Chebishev’s inequality (see, [So73]) it is possible to obtain

rn =
√

2dc1c2Ln−1/2−1/d.

The Monte Carlo algorithm constructed above has a superconvergent probable
error, but the conditions of the last theorem are strong. So, the following prob-
lem arises: Is it possible to obtain the same result but for functions that are only
continuous?

Let us consider the problem in IR1. Let [a, b] be partitioned into n subintervals
[xj−1, xj] and let dj = |xj − xj−1|. Then if ξ is a random point in [xj−1, xj] with

probability density function p(x)/pj, where pj =
∫ xj

xj−1

p(x)dx, the probable error of

the estimator θ∗n is given by the following:

Theorem 2.5.2 (Dimov & Tonev [DT89]).
Let f be continuous in [a, b] and let there exist positive constant c1, c2, c3 satisfying

pj ≤ c1/n, c3 ≤ dj ≤ c2/n for j = 1, 2, . . . , n. Then

22 Ivan Dimov

rn ≤ 4
√

2
c1c2

c3

τ
(
f ;

3

2
d
)

L2

n−3/2,

where d = max
j

dj and τ(f ; δ)L2 is the averaged modulus of smoothness, i.e.

τ(f ; δ)L2 =‖ ω(f, •; δ) ‖L2=

(∫ b

a
(ω(f, x; δ))qdx

)1/q

, 1 ≤ q ≤ ∞,

δ ∈ [0, (b− a)] and

ω(f, x; δ) = sup{|∆hf(t)| : t, t + h ∈ [x− δ/2, x + δ/2] ∩ [a, b]}.

where ∆h is the restriction operator.

In IRd the following theorem holds:

Theorem 2.5.3 (Dimov & Tonev [DT89]).
Let f be continuous in Ω ⊂ IRd and let there exist positive constants c1, c2, c3 such

that pj ≤ c1/n, dj ≤ c2n
1/d and Sj(•, c3) ⊂ Ωj, j = 1, 2, . . . , n, where Sj(•, c3) is a

sphere with radius c3. Then

rn ≤ 4
√

2
c1c2

c3

τ(f ; d)L2n
−1/2−1/d.

The result [DT89] was improved by Takev [Ta92]. His result is

rn = O(ω(f, n−1)L2)n
−1/2.

Let us note that the best quadrature formula with fixed nodes in IR1 in the sense
of Nikolskii [Ni88] for the class of functions W (1)(l; [a, b]) is the rectangular rule with
equidistant nodes, for which the error is approximately equal to c/n. For the Monte
Carlo algorithm given by Theorem 2.5.3 when nj = 1 the rate of convergence is im-
proved by an order of 1/2. This is essentially due to the fact that the randomisation
of the quadrature formula (random nodes) increases the rate of convergence by factor
of 1/2. At the same time, the estimate given in Theorem 2.5.2 for the rate of con-
vergence attains the lower bound estimate obtained by Bachvalov ([Ba59]), ([Ba61])
(see, also [Ba64], for the error of an arbitrary random quadrature formula for the
class of continuous functions in an interval [a, b].

2.6 Random Interpolation Quadrature

If the quadrature formula for computing the integral

Monte Carlo Methods 23

I =
∫

Ω
f(x)p(x)dx, Ω ⊂ IRd, p(x) ≥ 0,

∫

Ω
p(x)dx = 1

is denoted by the expression

I ≈
n∑

j=1

cjf(xj), (2.20)

where x1, . . . , xn ∈ Ω are random nodes and c1, . . . , cn are weights, then the random
quadrature formula can be written in the following form:

I ≈
n∑

j=1

kjf(xj), (2.21)

where x1, . . . , xn ∈ Ω are random nodes and k1, . . . , kn are random weights.
The random quadrature formulae (2.21) considered above are a very special case

of the (2.20) with fixed (non-random) weights.
All functions considered in this Section are supposed to be partially continuous

and belong to the space L2(Ω).
Let ϕ0, ϕ1, . . . , ϕm be a system of orthonormal functions, such that

∫

Ω
ϕk(x)ϕj(x)dx = δkj.

For p(x) = ϕ0(x) an approximate solution for the integral

I =
∫

Ω
f(x)ϕ0(x)dx (2.22)

can be found using a quadrature formula of the type (2.20).
Let us fix arbitrary nodes x0, x1, . . . , xm (xi 6= xj, i 6= j) and choose the

weights c0, c1, . . . , cm such that (2.20) is exact for the system of orthonormal functions
ϕ0, ϕ1, . . . , ϕm. In this case it is convenient to represent the quadrature formula (2.20)
as a ratio of two determinants

I ≈ Wf (x0, x1, . . . , xm)

Wϕ0(x0, x1, . . . , xm)
,

where

Wg(x0, x1, . . . , xm) =

∣∣∣∣∣∣∣∣∣∣

g(x0) ϕ1(x0) . . . ϕm(x0)
g(x1) ϕ1(x1) . . . ϕm(x1)
...

...
...

g(xm) ϕ1(xm) . . . ϕm(xm)

∣∣∣∣∣∣∣∣∣∣
. (2.23)

It is easy to check that if Wϕ0 6= 0 then the formula (2.22) is exact for every linear
combination of the kind

f = a0ϕ0 + . . . + amϕm.

24 Ivan Dimov

Theorem 2.6.1 (Sobol [So73]).
Let ϕ0, ϕ1, . . . , ϕm be an arbitrary set of orthonormal functions in Ω. Then

∫

Ω
. . .

∫

Ω
W 2

ϕ0
dx0 . . . dxm = (m + 1)!.

Theorem 2.6.2 (Sobol [So73]).
Let ϕ0, ϕ1, . . . , ϕm, ψ be an arbitrary set of orthonormal functions in Ω. Then

∫

Ω
. . .

∫

Ω
Wϕ0Wϕdx0 . . . dxm = 0.

For brevity denote by t the d(m + 1)-dimensional points of the domain

B ≡ Ω× Ω× . . .× Ω︸ ︷︷ ︸
m+1 times

so that dt = dx0...dxm; let B0 be the set of points t for which Wϕ0 = 0 and let
B+ = B − B0. Let us consider the random point ξ0, . . . , ξm in Ω and consider the
random variable

θ̂[f] =

Wf (ξ0,ξ1,...,ξm)

Wϕ0 (ξ0,ξ1,...,ξm)
, if (ξ0, ξ1, . . . , ξm) ∈ B+,

0, if (ξ0, ξ1, . . . , ξm) ∈ B0.
(2.24)

as an approximate value for (2.22)

Theorem 2.6.3 (Ermakov and Zolotuchin [EZ60], Ermakov [Er67])
If the joint probability density function of the random points ξ0, ξ1, . . . , ξm in B is

p(x0, . . . , xm) =
1

(m + 1)!
[Wϕ0(x0, . . . , xm)]2,

then, for every function f ∈ L2(D), the following is true:

Eθ̂[f] =
∫

Ω
f(x)ϕ0(x)dx, (2.25)

Dθ̂[f] ≤
∫

Ω
f 2(x)dx−

m∑

j=0

[∫

Ω
f(x)ϕj(x)dx

]
. (2.26)

P r o o f. Let us denote by cj the Fourier coefficients of the function f ∈ L2(Ω)

cj =
∫

Ω
f(x)ϕj(x)dx,

and

a2 =
∫

Ω

f(x)−

m∑

j=0

cjϕj(x)

2

dx =
∫

Ω
f 2(x)dx−

m∑

j=0

cj.

Monte Carlo Methods 25

If a2 6= 0, we can introduce the function

f(x) =
m∑

j=0

cjϕj(x) + aψ(x). (2.27)

It is easy to check that ψ(x) is orthogonal to every ϕj(x) and
∫

Ω
ψ2(x)dx = 1;

∫

Ω
ψ(x)ϕj(x)dx = 0, 0 ≤ j ≤ m.

If a = 0, the representation (2.27) still holds, because every normed function, which
is orthogonal to every ϕj, can be chosen as ψ. Replacing (2.27) in (2.23) one can
deduce the following result:

Wf =
m∑

j=0

cjWϕj
+ aWψ = c0Wψ0 + aWψ. (2.28)

Using (2.28), it is easy to calculate the mathematical expectation of (2.24)

Eθ̂[f] =
∫

B+

Wf

Wϕ0

p dt =
1

(m + 1)!

∫

B+

WfWϕ0dt =
1

(m + 1)!

∫

B
WfWϕ0dt

=
c0

(m + 1)!

∫

B
W 2

ϕ0
dt +

a

(m + 1)!

∫

B
Wϕ0Wψdt.

The first of the last two integrals is equal to (m + 1)! by Theorem 2.6.1; the
second integral is equal to 0 according to Theorem 2.6.2. Therefore Eθ̂[f] = c0,
which is equivalent to (2.25). This proves the statement (2.25) of the theorem.

Let us now compute Eθ̂2[f],

Eθ̂2[f] =
∫

B+

(
Wf

Wϕ0

)2

p dt =
1

(m + 1)!

∫

B+

W 2
f dt

=
1

(m + 1)!

∫

B+

[c2
0W

2
f + 2ac0Wϕ0Wψ + a2W 2

ψ]dt.

To prove the statement (2.26) we have to show that Dθ̂[f] ≤ a2. Using Theorem
2.6.1 we deduce that

Eθ̂2[f] =
c2
0

(m + 1)!

∫

B
W 2

ϕ0
dt +

2ac0

(m + 1)!

∫

B
Wϕ0Wψdt +

a2

(m + 1)!

∫

B+

W 2
ψdt.

Now
∫

B+

W 2
ψdt ≤

∫

B
W 2

ψdt = (m + 1)!,

and Eθ̂2[f] ≤ c2
0 + a2, from whence Dθ̂[f] = Eθ̂2[f]− c2

0 ≤ a2. ♦
From the proof it is obvious that the inequality (2.26) becomes an equality if and

only if Wϕ0 = 0 and only for a manifold with dimensions less than d(m + 1).

26 Ivan Dimov

2.7 Some Basic Facts about Quasi-Monte Carlo

Algorithms

The key point of Monte Carlo algorithms is the use of a random variable γ, uniformly
distributed in the interval (0, 1), the so-called ordinary random number. The concept
of a real random number is a mathematical abstraction. Numbers computed from
specified formulae but satisfying an accepted set of tests just as though they were real
random numbers, are called pseudo - random. Numbers which are used instead of
random numbers in some Monte Carlo algorithms to achieve convergence are called
quasi-random (Sobol [So91]). Quasi- random numbers are connected with a certain
class of algorithms and their applicability is more restricted than that of pseudo-
random numbers (Sobol [So91], Niederreiter [Ni87], [Ni92], see, chapter 4). The
reason in favor of quasi-random numbers is the possibility of increasing the rate of
convergence: the usual rate of n−1/2 can in some cases be replaced by n−1+ε, where
ε > 0 is arbitrarily small.

Let x ≡ (x(1), . . . , x(d)) be a point that belongs to the d-dimensional cube Cd =
{x : 0 ≤ x(i) ≤ 1; i = 1, 2, ..., d} and ξ = (γ(i), . . . , γ(d)) be a random point, uniformly
distributed in Cd .

An uniformly distributed sequence (u.d.s.) of non-random points was introduced
by Weyl in 1916 ([We16]).

Denote by Sn(Ω) the number of points with 1 ≤ i ≤ n that lie in Ω, where Ω ⊂ Cd.
The sequence x1, x2, . . . is called an u.d.s. if, for an arbitrary region Ω,

lim
n→∞[Sn(Ω)/n] = V (Ω),

where V (Ω) is the d-dimensional volume of Ω.

Theorem 2.7.1 (H. Weyl, see [We16, So91]).
The relation

lim
n→∞

1

n

n∑

i=1

f(ξj) =
∫

Cd
f(x)dx (2.29)

holds for all Riemann integrable functions f if and only if the sequence x1, x2, . . . is
u.d.s.

Comparing (2.8) with (2.29) one can conclude that if the random points ξi , are
replaced by the points xi of u.d.s., then for a wide class of functions f the averages
converge. In this case the ”i” th trial should be carried out using Cartesian coordinates
(x

(i)
(1), ..., x

(i)
(d)) of the point xi , rather than the random numbers γ1, ..., γn For practical

purposes a u.d.s. must be found that satisfied three additional requirements ([So73],
[So89]):

(i) the best asymptote as n →∞ ;

Monte Carlo Methods 27

(ii) well distributed points for small n ;

(iii) a computationally inexpensive algorithm.

All
∏

τ -sequences given in [So89] satisfy the first requirement. The definition of
∏

τ -
sequences is as follows: binary estimates are called estimates of the kind (j−1)2−m ≤
x < j2−m when j = 1, 2, ..., 2m,m = 0, 1, ... (for j = 2m the right-hand end of the
estimate is closed). A binary parallelepiped

∏
is a multiplication of binary estimates.

A net in Cd , consisting of n = 2ν points is called a
∏

τ -sequence, if every binary
∏

with volume 2τ

n
contains exactly 2τ points of the net. It is supposed that ν and τ

(ν > τ) are integers.
Subroutines to compute these points can be found in [So79] and Bradley and Fox

[1980] ([BF80]). More details are contained in Levitan, Markovitz, Rozin and Sobol
[1988] ([LMRS88]).

The problem of determining an error estimate for

1

n

n∑

i=1

f(ξj) ≈
∫

Cd
f(x)dx

arises.
If one uses the points x0, x1, . . . the answer is quite simple. Finite nets x0, . . . , xn−1, n =

2m (with m a positive integer), have good uniform properties ([So91]).

Non-random estimates of the error

δn(f) =
1

n

n−1∑

i=1

f(xi)−
∫

Cd
f(x)dx (2.30)

are known (Sobol [So91], [So89]).
Let us mention two results. First, assume that all partial derivatives of the func-

tion f(x), x ∈ Cd ⊂ IRd , that include at most one differentiation with respect to
each variable,

∂sf

∂x(i1) . . . ∂x(is)

, 1 ≤ i1 < . . . < is ≤ d, s = 1, 2, ..., d,

are continuous. It follows from [So91] that for n = 2m

|δn(f)| ≤ A(f)n−1(log n)d−1. (2.31)

If in (2.30) arbitrary values of n are used then in (2.31) (log n)d−1 must be replaced
by (log n)d ([So91]).

Consider a class of functions f(x), x ∈ Cd ⊂ IRd , with continuous first partial
derivatives. Denote

sup

∣∣∣∣∣
∂f

∂x(i)

∣∣∣∣∣ = Li, i = 1, ..., d.

It follows from the Sobol’s result ([So89]) that if n = 2m , then

28 Ivan Dimov

|δn(f)| ≤ max

(
s!

s∏

k=1

Lik/n

) 1
s

,

where the maximum is extended over all groups satisfying 1 ≤ i1 < . . . < is ≤ d and
s = 1, ..., d.

If, for example, some of the Li are very small, than the error estimate takes
advantage of this fact. The orders of convergence in both cases are optimal for the
corresponding classes of functions.

In Doroshkevich and Sobol [DS87] a five-dimensional improper integral is evalu-
ated by using the

∏
τ -approximation and the plain Monte Carlo algorithm.

2.8 Monte Carlo Algorithms for Continual Inte-

grals, Weight Functions and Splitting

2.8.1 Continual integrals

Let µ be a measure that corresponds to the homogeneous process with independent
increments ξ(s), 0 ≤ s ≤ t < ∞. Let us consider the Monte Carlo algorithm for
evaluating the continual integral from the functional F

∫
F (ξ)µ(dξ).

First, the random process ξ(s) is approximated by the process

ξ(m)(s) =
m∑

k=1

i(k)(s)[ξ(tk)− ξ(tk−1)],

where 0 = t0 < t1 < . . . < tm = t is a splitting of [0, t] into m parts and i(k)(s) is a
function that determines the type of the approximation. If, e.g.,

i(k)(s) =
s− tk−1

tk − tk−1

1[tk−1,tk)(s) + 1[tk,t)(s),

where

1A(τ) =

{
1, if τ ∈ A
0, if τ /∈ A

,

then an approximation of the trajectory of the process is obtained by polygons with
nodes at the points (tk, ξ(tk)), k = 0, 1, ..., m. The continual integral is approximated
by

∫
F (ξ)µ(dξ) = EF (x) ≈ EF (ξ(m))

and EF (ξ(m)) can be estimated by the formula

Monte Carlo Methods 29

EF (ξ(m)) ≈ 1

n

n∑

k=1

F (ξ
(m)
k), (2.32)

where ξ
(m)
k (s) are independent realizations of the process ξ(m)(s).

The approximation of ξ
(m)
k (s) by ξ(m)(s) is necessitated by the impossibility of

obtaining a realization directly from the process ξ(s).

With this mind Lichoded [Li89] showed that

∫
F (ξ)µ(dξ) =

1

n

n∑

k=1

F (ξ(m)) + R(m)(F) + rm
n (F),

where R(m)(F) =
∫

F (ξ)µ(dξ) − EF (ξ(m)) is the error arising from the replacement
of the random process ξ(s) by the random process ξ(m)(s), and rm

n (F) = EF (ξ(m))−
1
n

∑n
k=1 F (ξ

(m)
k) is the error arising from the computation of EF (ξ(m)) using (2.32).

In the above mentioned work the formula (2.32) is made more precise by the ap-
proximate determination of the error R(m)(F). Of course, this procedure is meaningful
if and only if R(m)(F) > rm

n (F).

Let us suppose that an exact formula exists for generalized polynomials of degree
2m + 1,

∫
G(ξ)µ(dξ) ≈

q∑

j=1

Aj

∫ t(m)

0
. . .

∫ t

0
G

(
m∑

α=1

x(j)
α 1[sα,t)(•) + a(•)

)
ds1 . . . dst

where q is an integer, Aj, x
(j)
α , 1 ≤ j ≤ q, 1 ≤ α ≤ m are coefficients and a(s) =∫

ξsµ(dξ) is the mean value of the measure µ.

In [Li89] the following theorem is proved.

Theorem 2.8.1 The approximate equality

R(m)(F) ≈ Rm
1 (F) ≡

q∑

j=1

Aj

∫ t(m)

0
. . .

∫ t

0
F

(
l∑

α=1

x(j)
α 1[sα,t)

(.) + a(.)

)
ds1 . . . dst,

is exact for generalized polynomials of degree (2m + 1).

From Theorem 2.8.1 it follows as a corollary that the approximate formula

EF (ξ) ≈ EF (ξ(m)) + R
(m)
1 (F)

is exact for (2m + 1)-degree generalized polynomials.

30 Ivan Dimov

2.8.2 Weight functions

In the work of Shaw [Sh88] Monte Carlo quadratures with weight functions are con-
sidered for the computation of

S(g; m) =
∫

g(θ)m(θ)dθ,

where g is some function (possibly vector or matrix valued).
The unnormalized posterior density m is expressed as the product of two functions

w and f , where w is called the weight function m(θ) = w(θ)f(θ). The weight function
w is nonnegative and integrated to one; i.e.,

∫
w(θ)dθ = 1, and it is chosen to have

similar properties to m.
Most numerical integration algorithms then replace the function m(θ) by a discrete

approximation in the form of Shaw [Sh88]:

m̂(θ) =

{
wif(θ), θ = θi, i = 1, 2, ..., n,
0 elsewhere,

so that the integrals S(g; m) may by estimated by

Ŝ(g; m) =
n∑

i=1

wif(θi)g(θi). (2.33)

Integration algorithms use the weight function w as the kernel of the approxima-
tion of the integrand

S(g; m) =
∫

g(θ)m(θ)dθ =
∫

g(θ)w(θ)f(θ)dθ =
∫

g(θ)f(θ)dW (θ) = Ew(g(θ)f(θ)).

This suggests a Monte Carlo approach to numerical integration (Shaw [Sh88]):
generate nodes θ1, . . . θn independently from the distribution w and estimate S(g; m)
by Ŝ(g; m) in (2.33) with wi = 1

n
. If g(θ)f(θ) is a constant then Ŝ(g; m) will be exact.

More generally Ŝ(g; m) is unbiased and its variance will be small if w(θ) has a similar
shape to |g(θ)m(θ)|. The above procedure is also known as importance sampling (see
Section (2.4.3).

In [Sh88] it is noted that the determination of the weight function can be done
iteratively using a posterior information.

Monte Carlo quadratures which use posterior distributions are examined in Van
Dijk and Kloek [1983, 1985] (see, [VK83, VK85]), Van Dijk, Hop and Louter [1987]
(see, [VHL87]), Stewart [1983, 1985, 1987] (see, [St83, St85, St87]), Stewart and Davis
[1986] (see, [SD86]), Kloek and Van Dijk [1978] (see, [KV78]).

2.8.3 Splitting

Here we present the approach of Mikhailov, published in [Mi87]. Suppose

Monte Carlo Methods 31

I =
∫

X

∫

Y
f(x, y)g(x, y)dxdy

has to be computed, where f(x, y) is the density of the joint distribution of the
random vectors ξ and η .

Following [Mi87], let us introduce the notation:

ζ = g(ξ, η), E[ζ|x] =
∫

Y
f2(y|x)d(x, y)dy, f1(x) =

∫

Y
f(x, y)dy,

where f1(x) is the density of the absolute distribution of ξ; f2(y|x) is the density of the
conditional distribution of η when ξ = x and E[ζ|x] is the conditional mathematical
expectation of the random variable ζ when ξ = x.

Following this, the problem is reduced to the computation of the integral
∫

X
f1(x)E[ζ|x]dx.

Furthermore, the amount of the variance decreases, i.e. DE[ζ|ξ] ≤ Dξ, since
Dξ = ED[ζ|ξ] + DE[ζ|ξ].

It is useful to use several values of η for one value of ξ.
In the work of Mikhailov [Mi87] an approach for optimization of such an algorithm

is proposed. Let ξ be distributed with density f1(x) and let n(ξ) be an integer, which
depends on ξ, n(ξ) ≥ 1. The random variables η1, . . . , ηn(ξ) are independent and
equally conditionally distributed with density f2(y|x) under the condition ξ = x.

Mikhailov [Mi87] uses for following estimate:

ζ =
1

n(ξ)

n(ξ)∑

k=1

g(ξ, ηk),

and demonstrates that

Eζn =
∫

X

∫

Y
f(x, y)g(x, y)dxdy,

Dζn = DE[ζ|ξ] + E

{
D[ζ|ξ]
n(ξ)

}
.

When n(ξ) = const = n, the optimal value of n can be found (which minimizes
the computational complexity of the algorithm),

Sn = tnDζn,

where tn = t1 + E[n(ξ)t2(ξ)] with t1 the computational time for the computation of
one value of ξ , and t2(x) the time for the computation of one value of η under the
condition ξ = x,

n =

√
A2t1
A1t2

,

where A1 and A2 are estimated by the result from special a priori calculations.

32 Ivan Dimov

2.9 Adaptive Monte Carlo Algorithms for Practi-

cal Computations

In this section a superconvergent adaptive algorithm for practical computations will
be presented. The algorithm under consideration combines the idea of separation of
the domain into uniformly small subdomains with the Kahn approach of importance
sampling. An estimate of the probable error for functions with bounded derivative will
be proved. This estimate improves the existing results. A plain adaptive Monte Carlo
algorithm is also considered. It will be shown that for large dimensions d the conver-
gence of the superconvergent adaptive Monte Carlo algorithm goes asymptotically to
O(n1/2), which corresponds to the convergence of the plain adaptive algorithm.

The both adaptive algorithms - superconvergent and plain - are applied for cal-
culating multidimensional integrals. Numerical tests are performed on the computer
CRAY Y-MP C92A. It is shown that for low dimensions (up to d = 5) the super-
convergent adaptive algorithm gives better results than the plain adaptive algorithm.
When the dimension increases the plain adaptive algorithm becomes better. One
needs several seconds for evaluating 30-d integrals by plain adaptive algorithm, while
the solution of the same integral by Gaussian quadrature would need more than 106

billion years if CRAY Y-MP C92A were used.
As it was shown in Section 2.1, the probable error for the plain Monte Carlo

algorithm (which does not use any a priori information about the smoothness of
f(x)) is defined as:

rn = c0.5σ(θ)n−1/2,

where c0.5 ≈ 0.6745.
In Section 2.5 it was defined that a superconvergent Monte Carlo algorithm is an

algorithm for which

rn = cn−1/2−ε(d),

where c is a constant and ε(d) > 0 [So73], [DT89].
The idea of the algorithm consists in separating the domain Ω into subdomains

Ωj that are uniformly small according both to the probability and to the sizes.
Another degree of quality of the Monte Carlo algorithm is the variance of the

random variable θ, whose mathematical expectation is equal to I. Let θ be a random
variable in the plain Monte Carlo algorithm such that

I = Eθ.

Let θ̂ be another random variable for which

I = Eθ̂

and the conditions providing the existence and the finiteness of the dispersion Dθ̂ be
fulfilled.

As it was shown in 2.4.4 the algorithm for which

Monte Carlo Methods 33

Dθ̂ < Dθ

is called efficient Monte Carlo algorithm [Ka50], [Mi87], [Di91], [DT93]. An algorithm
of this type is proposed by Kahn [Ka50] (for evaluation of integrals) and by Mikhailov
and Dimov (for evaluation of integral equations) [Mi87], [Di91].

Here we deal with adaptive Monte Carlo algorithms, which use a priori and a pos-
teriori information obtained during calculations. Both approaches - superconvergent
adaptive approach and plain adaptive approach are applied. The works having stud-
ied superconvergent Monte Carlo algorithms show that the separation of the domain
into uniformly small subdomains brings to an increase of the rate of convergence.
But this separation does not use any a priori information about parameters of the
problem. The Kahn approach and the approach in [Mi87], [Di91] use the information
about the problem parameters, but do not use the idea of separation. In this section
a superconvergent algorithm which uses both the idea of separation and the idea of
importance sampling is presented. This algorithm is called superconvergent adaptive
Monte Carlo (SAMC) algorithm. A plain adaptive Monte Carlo (AMC) algorithm
will also be presented and studied.

The next subsection 2.9.1 contains theoretical results connected to SAMC algo-
rithms. In fact, the proposed algorithm is an superconvergent Monte Carlo algorithm
with the probable error of type c× n−1/2−ε(d), but the constant c before n−1/2−ε(d) is
smaller than the constant of the usual superconvergent Monte Carlo algorithm. In
2.9.2 two adaptive Monte Carlo algorithms - plain and superconvergent - will be imple-
mented. This subsection contains numerical results of evaluating multi-dimensional
integrals. It will be shown that for low dimensions (up to d = 5) the superconver-
gent adaptive Monte Carlo algorithm gives better results than the plain adaptive
algorithm.

2.9.1 Superconvergent adaptive Monte Carlo algorithm and
error estimates

The following problem arises:
Problem 1: Is it possible to combine the idea of separation of the domain into

uniformly small subdomains with the Kahn approach of importance sampling?
Here we consider functions f(x) from the class W r(M ; Ω). The definition of

W r(M ; Ω) is given in the Introduction (see, Chapter 1).
First, consider the one-dimensional problem of evaluation integrals:

I =
∫

Ω
f(x)p(x) dx, Ω ≡ [0, 1],

where the positive function f(x) ∈ W 1(L; [0, 1]) and
∫
Ω p(x)dx = 1. Consider (as an

example of importance separation) the following partitioning of the interval [0,1] into
m subintervals (m ≤ n):

x0 = 0; xm = 1;

34 Ivan Dimov

Ci = 1/2[f(xi−1) + f(1)](1− xi−1), i = 1, . . . ,m− 1;

i = 1, . . . , m− 1;

xi = xi−1 +
Ci

f(xi−1)(n− i + 1)
, i = 1, ...,m− 1 (2.34)

Ω1 ≡ [x0, x1], Ωi ≡ (xi−1, xi], i = 2, . . . , m.

The scheme (2.34) gives us an importance separation of the domain Ω ≡ [0, 1]. We
have:

I =
∫ 1

0
f(x)p(x) dx =

m∑

i=1

∫ xi

xi−1

f(x)p(x) dx.

Denote by pi and Ii the following expressions:

pi =
∫ xi

xi−1

p(x) dx

and

Ii =
∫ xi

xi−1

f(x)p(x) dx.

Obviously

m∑

i=1

pi = 1;
m∑

i=1

Ii = I.

Consider now a random variable ξ(i) ∈ Ωi with a density function p(x)/pi, where
Ωi ≡ (xi−1, xi]. In this case

Ii = E(pif(ξ(i))).

Let ni be a number of random points in Ωi(
∑m

i=1 ni = n).
It is easy to show that

Ii = E

[
pi

ni

ni∑

s=1

f(ξ(i)
s)

]
= Eθni

;

I = E

[
m∑

i=1

pi

ni

ni∑

s=1

f(ξ(i)
s)

]
= Eθ∗n.

Let ni = 1 (so, m = n). Since f(x) ∈ W 1(L; [0, 1], there exist constants Li, such
that

Monte Carlo Methods 35

Li ≥
∣∣∣∣∣
∂f

∂x

∣∣∣∣∣ for any x ∈ Ωi. (2.35)

Moreover, for our scheme there exist constants c
(i)
1 and c

(i)
2 such that

pi =
∫

Ωi

p(x) dx ≤ c
(i)
1 /n, i = 1, . . . , n (2.36)

and

sup
x
(i)
1 ,x

(i)
2 ∈Ωi

|x(i)
1 − x

(i)
2 | ≤ c

(i)
2 /n, i = 1, . . . , n. (2.37)

We shall say, that the conditions (2.35)-(2.37) define an importance separation of
Ω in general. Note that the scheme (2.34) gives us only an example of a possible
construction of such importance separation.

Theorem 2.9.1 Let f(x) ∈ W 1(L; [0, 1]) and m = n. Then for the importance
separation of Ω

rn ≤
√

2[1/n
n∑

j=1

(Ljc
(j)
1 c

(j)
2)2]1/2n−3/2.

P r o o f. Let Ωj be any subdomain of [0, 1]. For a fixed point s(j) ∈ Ωj we have:

f(ξ(j)) = f(s(j)) + f ′(η(j))(ξ(j) − s(j)),

where η(j) ∈ Ωj.
Since f ′(η(j)) ≤ Lj we have:

Df(ξ(j)) ≤ Ef 2(ξ(j)) ≤ L2
jE(ξ(j) − s(j))2

≤ L2
j sup

x
(i)
1 ,x

(i)
2 ∈Ωj

|x(j)
1 − x

(j)
2 |2 ≤ L2

j(c
(j)
2)2/n2.

Now the variance Dθ∗n can be estimated :

Dθ∗n =
n∑

j=1

p2
jDf(ξ(j)) ≤

n∑

j=1

((c
(j)
1)2n−2L2

j(c
(j)
2)2n−2)

= 1/n
n∑

j=1

(Ljc
(j)
1 c

(j)
2)2n−3.

To estimate the probable error one can apply the Chebyshev’s inequality:

Pr{|θ∗n − Eθ∗n| < h} ≥ 1− (Dθ∗n/h2),

where h > 0.

36 Ivan Dimov

Let

h = 1/ε(Dθ∗n)1/2,

where ε is a positive number.
For ε = 1/

√
2 we have:

Pr{|θ∗n − I| <
√

2(Dθ∗n)1/2} ≥ 1/2.

The last inequality proves the theorem, since

rn ≤
√

2(Dθ∗n)1/2

=
√

2

 1

n

n∑

j=1

(Ljc
(j)
1 c

(j)
2)2

1/2

n−3/2. (2.38)

♦
This result presents a superconvergent adaptive Monte Carlo algorithm. Moreover,

the constants
√

2
(

1
n

∑n
j=1(Ljc

(j)
1 c

(j)
2)2

)1/2
in (2.38) is smaller than the constant in the

algorithms of the Dupach type [Du56], [DT89] presented in Section 2.5. In fact,
Li ≤ L for any i = 1, . . . ,m = n. Obviously,

1

n

n∑

j=1

Ljc
(j)
1 c

(j)
2 ≤ Lc1c2.

Now consider multi-dimensional integrals:

I =
∫

Ω
f(x)p(x) dx , x ∈ Ω ⊂ IRd,

where the positive function f(x) belongs to W 1(L; Ω).
Let

f(x) ∈ W 1(Li; Ωi), for any x ∈ Ωi. (2.39)

Let there exist vectors

Li = (Li1 , . . . , Lid), i = 1, . . . , n,

such that

Lil ≥
∣∣∣∣∣

∂f

∂x(l)

∣∣∣∣∣ , l = 1, . . . , d; x = (x1, . . . , xd) ∈ Ωi. (2.40)

Let there are positive constants c
(i)
1 and a vector

c
(i)
2 = (c

(i)
2(1), c

(i)
2(2), . . . , c

(i)
2(d)), (2.41)

such that,

Monte Carlo Methods 37

pi =
∫

Ωi

p(x) dx ≤ c
(i)
1 /n, i = 1, . . . , n (2.42)

and

dil = sup
x
(i)

1(l)
,x

(i)

2(l)
∈Ωi

|x(i)
1(l) − x

(i)
2(l)| ≤ c

(i)
2(l)/n

1/d; i = 1, . . . , n, l = 1, . . . , d. (2.43)

The conditions (2.40 – 2.43) define an importance separation of the domain Ω in
the d-dimensional case.

Consider, as an example, the following importance separation of the domain Ω:
on each dimension we use the scheme (2.34).

The following statement is fulfilled:

Theorem 2.9.2 Let there exist an importance separation of Ω such that (2.39) is
satisfied and m = n. Then

rn ≤
√

2d

[
1

n

n∑

i=1

d∑

l=1

(Lilc
(i)
1 c

(i)
2(l))

2

]1/2

n−1/2−1/d.

The proof of this theorem follows the same techniques as the proof of Theorem
2.9.1.

Let us formulate one important corollary from this theorem. Denote by

Lj = maxlLjl, j = 1, . . . , n (2.44)

and let

c
(j)
2 = maxlc

(j)
2(l).

Corollary: If Lj is defined by (2.44), then for the probable error of the impor-
tance separation algorithm the following estimate holds:

rn ≤
√

2d

1

n

n∑

j=1

(c
(j)
1 c

(j)
2 Lj)

2

1/2

n−1/2−1/d,

where Lj = maxlLjl.

The proof is obvious since,

d∑

l=1

Ljl ≤ d ·maxlLjl = dLj.

38 Ivan Dimov

2.9.2 Implementation of adaptive Monte Carlo algorithms.
Numerical tests

The algorithms are realized on CRAY Y-MP C92A machine with two vector proces-
sors. Two Monte Carlo algorithms are considered.

1. Plain adaptive Monte Carlo algorithm

This approach does not use any a priori information about the smoothness of
the integrand. It deals with n uniformly distributed random points xi ∈ [0, 1]d, i =
1, . . . , n into d- dimensional cube [0, 1]d. For generating of any point, d uniformly dis-
tributed random numbers into interval [0, 1] are produced. The algorithm is adaptive:
it starts with a relatively small number n, which is given as an input data. During
the calculations the variance on each dimension coordinate is estimated. The above
mentioned information is used for increasing the density of the new generated points.
This approach leads to the following estimate

ε ≤ c
1

n1/2

instead of standard estimate for the probable error

ε ≤ 0.6745σ(θ)
1

n1/2
,

where

c ≤ 0.6745σ(θ).

2. Superconvergent adaptive Monte Carlo algorithm.

As a first step of this algorithm the domain of integration is separated into subdo-
mains with identical volume. For every subdomain the integral Ij is evaluated and a
posteriori information for the variance is also received. After that an approximation
for the integral I =

∑
j Ij and the total variance is obtained. The total variance is

compared with local a posteriori estimates for the variance in every subdomain. The
obtained information is used for the next refinement of the domain and for increasing
the density of the random points.

The probable error for this approach has the following form

ε ≤ cn−
1
2
− 1

d . (2.45)

Obviously, for a large dimension d, the convergence goes asymptotically to O(n−1/2).

Since, the SAMC algorithm is more time consuming, for large dimensions d it is
better to use the AMC algorithm. This was observed during the performed calcu-
lations. But for relatively small d (d = 1, . . . , 5) and for ”bad” (not very smooth)
functions (say, functions with bounded first derivative) the SAMC algorithm success-
fully competes with the standard Gaussian quadratures.

Both algorithms have been used for evaluating integrals of different dimensions
and integrands with large and small variance, as well as high and low smoothness.

Monte Carlo Methods 39

0.96

0.98

1

1.02

1.04

3.5 4 4.5 5 5.5 6

Importance separation MC method - requested eccuracy - 0.001
Adaptive MC method

Exact value I=0.98848

2

4

6

8

10

12

14

16

18

20

3.5 4 4.5 5 5.5 6 6.5

MC integratin, d=10
"err.10"

Exact solution

Figure 2.1
Superconvergent AMC integration

(d = 5)
(comparison with the AMC)

Figure 2.2
AMC integration, d = 10

Here some results of numerical experiments are given. We will present four exam-
ples (the exact values of integrals are presented to be able to compare the real error
with the a posteriori estimated error).

Example 1.
n = 4

I1 =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4x1x
2
3 exp{2x1x3}

(1 + x2 + x4)2
dx1dx2dx3dx4 = 0.5753.

Example 2.
n = 5

I2 =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4x1x
2
3 exp{2x1x3} exp{x5}
(1 + x2 + x4)2

dx1dx2dx3dx4 = 0.98848.

Example 3.
n = 25

I3 =
∫ 1

0
. . .

∫ 1

0

4x1x
2
3 exp{2x1x3}

(1 + x2 + x4)2
exp{x5 + . . . + x20}×

x21x22 . . . x25 dx1 . . . dx25 = 103.8

Example 4.
n = 30

I4 =
∫ 1

0
. . .

∫ 1

0

4x1x
2
3 exp{2x1x3}

(1 + x2 + x4)2
exp{x5 + . . . + x20}×

x21x22 . . . x30 dx1 . . . dx30 = 3.244

Some results are presented in Table 2.1.

40 Ivan Dimov

0

20

40

60

80

100

120

140

3 4 5 6 7 8

MC integration, d=25
"err.25"

Exact solution

5

10

15

20

25

30

35

40

3.5 4 4.5 5 5.5 6 6.5

"err.5"
"err.10"
"err.25"

Figure 2.3
AMC integration (d = 25)

(comparison with the AMC)

Figure 2.4
Errors for AMC integration (different

dimensions)

Table 2.1 contains information about the dimension of the integral, the exact
solution, the applied Monte Carlo approach, calculated solution, CP-time, estimated
error, relative error really obtained and number of random points.

Some of numerical results are presented on Fig. 2.1 - 2.4. Figure 2.1 shows the
results of implementation of SAMC algorithm for solving 5-d integral. The depen-
dence of the calculated values and the error from the logarithm of the number of
random points (log n) is presented. In this case about 9000 random points are suffi-
cient for obtaining a relatively good accuracy (the requested accuracy in this case is
0.001). Figure 2.2 presents results of calculated values and the error for 10-d integral
for different numbers of random points (here again on the x-coordinate the values of
log n are presented). Figure 2.3 expresses the results for the solution as well as for
the estimated error obtained for 25-d integral. Some numerical results for the imple-
mentation of AMC algorithm for 30-d integral are also presented. It is clear that in
this case the estimated error can not be very small. Nevertheless, such accuracy is
sufficient for applications which are considered in control theory.

2.9.3 Conclusion

1. For low dimensions SAMC algorithm gives better results than AMC algorithm.
For example, for d = 5, SAMC algorithm needs 9000 realizations for reaching an
error of 0.03%, while AMC algorithm needs 20000 realizations for reaching an er-
ror of 0.17%. The CP-time of the SAMC algorithm is about 7 times less than the
corresponding CP-time of the AMC algorithm.

2. When the dimension d is high AMC gives better results than SAMC algorithm.
It can be explain with the fact that for large dimensions d the error of the SAMC
algorithm asymptotically goes to O(n−1/2) which corresponds to the error of AMC
algorithm.

Monte Carlo Methods 41

Table 2.1: Results of numerical experiments performed on CRAY Y-MP
C92A

Dim. Exact Method Calcul. CP− time, Estim. Rel. Num.of
d sol. solution s error error points
4 0.5753 AMC 0.5763 0.184 0.025 0.0017 20000
4 0.5753 SAMC 0.5755 0.025 0.82.10−2 0.0003 1728

25 103.8 AMC 107.66 3.338 0.05 0.036 105

25 103.8 AMC 104.6 17.2 0.024 0.0077 5.105

25 103.8 AMC 103.1 54.9 0.017 0.0069 106

30 3.244 AMC 3.365 4.07 0.099 0.037 105

30 3.244 AMC 3.551 0.879 0.23 0.095 2.104

3. It is very important that Monte Carlo algorithm permits to integrate numeri-
cally high-dimensional integrals with relatively good accuracy. For example, the value
of 25-d integral can be computed for 54.9 s only with an error less than 1%. The
same integral can be evaluated for 3.34 s with an error of 3.6%. For evaluation of 30-d
integral with an error of 3.7% CP-time of 4.07 s is needed. For reaching the same
accuracy with quadrature formula of Gaussian type one needs at least 10 nodes on
each direction, which means that 1030 values of the integrand have to be calculated. It
means that 1023 s or more than 106 billion years are needed if supercomputer CRAY
Y-MP C92A is used.

42 Ivan Dimov

Chapter 3

SOLVING LINEAR EQUATIONS

In general, Monte Carlo numerical algorithms may be divided into two classes – direct
algorithms and iterative algorithms. The direct algorithms provide an estimate of the
solution of the equation in a finite number of steps, and contain only a stochastic
error. For example, direct Monte Carlo algorithms are the algorithms for evaluating
integrals [HH64], [So73]. Iterative Monte Carlo algorithms deal with an approximate
solution obtaining an improved solution with each step of the algorithm. In principle,
they require an infinite number of steps to obtain the exact solution, but usually one
is happy with an approximation to say k significant figures. In this latter case there
are two errors - stochastic and systematic. The systematic error depends both on the
number of iterations performed and the characteristic values of the iteration operator,
while the stochastic errors depend on the probabilistic nature of the algorithm.

Iterative algorithms are preferred for solving integral equations and large sparse
systems of algebraic equations (such as those arising from approximations of partial
differential equations). Such algorithms are good for diagonally dominant systems
in which convergence is rapid; they are not so useful for problems involving dense
matrices, for example.

Define an iteration of degree j as

u(k+1) = Fk(A, b, u(k), u(k−1), . . . , u(k−j+1)),

where u(k) is obtained from the kth iteration. It is desired that

u(k) → u = A−1b as k →∞.

Usually the degree of j is kept small because of storage requirements.

The iteration is called stationary if Fk = F for all k, that is, Fk is independent of
k.

The iterative Monte Carlo process is said to be linear if Fk is a linear function of
uk, . . . , u(k−j+1) .

We shall consider iterative stationary linear Monte Carlo algorithms and will an-
alyze both systematic and stochastic errors.

43

44 Ivan Dimov

3.1 Iterative Monte Carlo Algorithms

Consider a general description of the iterative Monte Carlo algorithms. Let X be a
Banach space of real-valued functions. Let f = f(x) ∈ X and uk = u(xk) ∈ X be
defined in IRd and L = L(u) be a linear operator defined on X.

Consider the sequence u1, u2, ..., defined by the recursion formula

uk = L(uk−1) + f, k = 1, 2, . . . (3.1)

The formal solution of (3.1) is the truncated Neumann series

uk = f + L(f) + . . . + Lk−1(f) + Lk(u0), k > 0, (3.2)

where Lk means the k-th iterate of L.
As an example consider the integral iterations.
Let u(x) ∈ X , x ∈ Ω ⊂ IRd and l(x, x′) be a function defined for x ∈ Ω, x′ ∈ Ω.

The integral transformation

Lu(x) =
∫

Ω
l(x, x′)u(x′)dx′

maps the function u(x) into the function Lu(x), and is called an iteration of u(x)
by the integral transformation kernel l(x, x′). The second integral iteration of u(x) is
denoted by

LLu(x) = L2u(x).

Obviously,

L2u(x) =
∫

Ω

∫

Ω
l(x, x′)l(x′, x′′)dx′dx′′.

In this way L3u(x), . . . , Liu(x), . . . can be defined.
When the infinite series converges, the sum is an element u from the space X

which satisfies the equation
u = L(u) + f. (3.3)

The truncation error of (3.2) is

uk − u = Lk(u0 − u).

Let J(uk) be a linear functional that is to be calculated. Consider the spaces

Ti+1 = IRd × IRd × . . .× IRd

︸ ︷︷ ︸
i times

, i = 1, 2, . . . , k, (3.4)

where ”×” denotes the Cartesian product of spaces.
Random variables θi, i = 0, 1, . . . , k are defined on the respective product spaces

Ti+1 and have conditional mathematical expectations:

Eθ0 = J(u0), E(θ1/θ0) = J(u1), . . . , E(θk/θ0) = J(uk),

Monte Carlo Methods 45

where J(u) is a linear functional of u.
The computational problem then becomes one of calculating repeated realizations

of θk and combining them into an appropriate statistical estimator of J(uk).
As an approximate value of the linear functional J(uk) is set up

J(uk) ≈ 1

n

n∑

s=1

{θk}s, (3.5)

where {θk}s is the s-th realization of the random variable θk.
The probable error rn of (3.5) [EM82] is then

rn = c σ(θk)n
− 1

2 ,

where c ≈ 0.6745 and σ(θk) is the standard deviation of the random variable θk.
There are two approaches which correspond to two special cases of the operator

L :

• (i) L is a matrix and u and f are vectors;

• (ii) L is an ordinary integral transform

L(u) =
∫

Ω
l(x, y)u(y)dy

and u(x) and f(x) are functions.

First consider the second case. Equation (3.3) becomes

u(x) =
∫

Ω
l(x, y)u(y)dy + f(x) or u = Lu + f. (3.6)

Monte Carlo algorithms frequently involve the evaluation of linear functionals of
the solution of the following type

J(u) =
∫

Ω

h(x)u(x)dx = (u, h). (3.7)

In fact, the equation (3.7) defines an inner product of a given function h(x) ∈ X
with the solution of the integral equation (3.3).

Sometimes, the adjoint equation

v = L∗v + h (3.8)

will be used.
In (3.8) v, h ∈ X∗, L∗ ∈ [X∗ → X∗],X∗ is the dual functional space to X and L∗

is an adjoint operator.
For some important applications X = L1 and

‖ f ‖L1=
∫

Ω

| f(x) | dx;

46 Ivan Dimov

‖ L ‖L1≤ sup
x

∫

Ω

| l(x, x′) | dx′. (3.9)

In this case h(x) ∈ L∞, hence L1
∗ ≡ L∞ and

‖ h ‖L∞= sup |h(x)| x ∈ Ω.

For many applications X = X∗ = L2. Note also, that if h(x), u(x) ∈ L2 then the
inner product (3.7) is finite. In fact,

∣∣∣∣
∫

Ω
h(x)u(x)dx

∣∣∣∣ ≤
∫

Ω
|h(x)u(x)|dx ≤

{∫

Ω
h2dx

∫

Ω
u2dx

}1/2

< ∞.

One can see, that if u(x) ∈ L2 and l(x, x′) ∈ L2(Ω× Ω) then Lu(x) ∈ L2:

|Lu(x)|2 ≤
{∫

Ω
|lu|dx′

}2

≤
∫

Ω
l2(x, x′)dx′

∫

Ω
u2(x′)dx′.

Let us integrate the last inequality with respect to x:

∫

Ω
|Lu|2dx ≤

∫

Ω

∫

Ω
l2(x, x′)dx′dx

∫

Ω
u2(x′)dx′ < ∞.

From the last inequality it follows that L2u(x), . . . , Liu(x), . . . belong also to
L2(Ω).

Obviously, if u ∈ L1 and h ∈ L∞ the inner product (3.7) will be bounded.
If it is assumed that ‖ Lm ‖< 1, where m is any natural number, then the

Neumann series

u =
∞∑

i=0

Lif

converges.
The condition ‖ Lm ‖< 1 is not very strong, since, as it was shown by K. Sabelfeld

[Sa89], it is possible to construct a Monte Carlo algorithm for which the Neumann
series does not converge. Analytically extending the resolvent by a change of the
spectral parameter gives a possibility to obtain a convergent algorithm when Neumann
series for the original problem does not converge or to accelerate the convergence when
it converges slowly.

It is easy to show that

J = (h, u) = (f, v).

In fact, let us multiply (3.6) by v and (3.8) by u and integrate. We obtain

(v, u) = (v, Lu) + (v, f) and (v, u) = (L∗v, u) + (h, u).

Since

(L∗v, u) =
∫

Ω
L∗v(x)u(x)dx =

∫

Ω

∫

Ω
l∗(x, x′)v(x′)u(x)dxdx′

Monte Carlo Methods 47

=
∫

Ω

∫

Ω
l(x′, x)u(x)v(x′)dxdx′ =

∫

Ω
Lu(x′)v(x′)dx′ = (v, Lu),

we have

(L∗v, u) = (v, Lu).

Thus, (h, u) = (f, v) . (Usually, the kernel l(x′, x) is called transposed kernel.)
Consider the Monte Carlo algorithm for evaluating the functional (3.7). It can be

seen that when l(x, x′) ≡ 0 evaluation of the integrals can pose a problem. Consider a
random point ξ ∈ Ω with a density p(x) and let there be n realizations of the random
point ξi(i = 1, 2, ..., n). Let a random variable θ(ξ) be defined in Ω, such that

Eθ(ξ) = J.

Then the computational problem becomes one of calculating repeated realizations
of θ and of combining them into an appropriate statistical estimator of J . Note that
the nature of the every process realization of θ is a Markov process. We will consider
only discrete Markov processes with a finite set of states, the so called Markov chains
(see, the definition given in the introduction 1).

An approximate value of the linear functional J , defined by (3.7) is

J ≈ 1

n

n∑

s=1

(θ)s = θ̂n,

where (θ)s is the s-th realization of the random variable θ.
The random variable whose mathematical expectation is equal to J(u) is given by

the following expression

θ[h] =
h(ξ0)

p(ξ0)

∞∑

j=0

Qjf(ξj),

where Q0 = 1; Qj = Qj−1
l(ξj−1, ξj)

p(ξj−1, ξj)
, j = 1, 2, . . . , and ξ0, ξ1, . . . is a Markov chain in

Ω with initial density function p(x) and transition density function p(x, y).
For the first case, when the linear operator L is a matrix, the equation (3.2) can

be written in the following form :

uk = Lku0 + Lk−1f + . . . + Lf + f = (I − Lk)(I − L)−1f + Lku0, (3.10)

where I is the unit (identity) matrix;
L = (lij)

m
i,j=1; u0 = (u0

1, . . . , u
0
m)T and matrix I−L is supposed to be non-singular.

It is well known that if all eigenvalues of the matrix L lie within the unit circle of
the complex plane there exists a vector u such that

u = lim
k→∞

uk ,

which satisfies the equation

48 Ivan Dimov

u = Lu + f (3.11)

(see, for example, [GV83]).
Now consider the problem of evaluating the inner product

J(u) = (h, u) =
m∑

i=1

hiui , (3.12)

where h ∈ IRm×1 is a given vector-column.
To construct a random variable whose mathematical expectation coincides with

the functional (3.12) for the system (3.14 first consider the integral equation (3.6)
for which Ω = [0,m) is an one-dimensional interval divided into equal subintervals
Ωi = [i− 1, i), i = 1, 2, . . . m such that

{
l(x, y) = lij , x ∈ Ωi, y ∈ Ωj

f(x) = fi , x ∈ Ωi

Then the integral equation (3.6) becomes

ui =
∑

j

∫

Ωj

liju(y)dy + fi

for ui ∈ Ωi. Denote

uj =
∫

Ωj

u(y)dy (3.13)

so that one obtains, for u(x) ∈ Ωi,

u(x) =
m∑

j=1

lijuj + fi.

From the last equation it follows that u(x) = ui and so,

ui =
m∑

j=1

lijuj + fi ,

or in a matrix form

u = Lu + f , (3.14)

where L = {lij}m
i,j=1 .

The above permits the construction of the following random variable

θ[h] =
hk0

p0

∞∑

ν=0

Qνfkν , (3.15)

where

Monte Carlo Methods 49

Q0 = 1; Qν = Qν−1
lkν−1,kν

pkν−1,kν

, ν = 1, 2, . . . (3.16)

and k0, k1, . . . is a Markov chain on elements of the matrix L constructed by using
an initial probability p0 and a transition probability pkν−1,kν for choosing the element
lkν−1,kν of the matrix L.

3.2 Solving Linear Systems and Matrix Inversion

Consider a matrix L:
L = {lij}m

i,j=1, L ∈ IRm×m

and a vector

f = (f1, . . . , fm)T ∈ IRm×1

The matrix L can be considered as a linear operator L[IRm → IRm], so that the
linear transformation

Lf ∈ IRm×1 (3.17)

defines a new vector in IRm×1.
Since iterative Monte Carlo algorithms using the transformation (3.17) will be

considered, the linear transformation (3.17) will be called iteration. The algebraic
transformation (3.17) plays a fundamental role in iterative Monte Carlo algorithms.

Now consider the following two problems Pi (i=1,2) for the matrix L:

Problem P1. Evaluating the inner product

J(u) = (h, u) =
m∑

i=1

hiui

of the solution u ∈ IRm×1 of the linear algebraic system

Au = b,

where A = {aij}m
i,j=1 ∈ IRm×m is a given matrix; b = (b1, . . . , bm)T ∈ IRm×1 and

h = (h1, . . . , hm)T ∈ IRm×1 are given vectors.
It is possible to choose a non-singular matrix M ∈ IRm×m such that MA = I −L,

where I ∈ IRm×m is the identity matrix and Mb = f , f ∈ IRm×1.
Then

u = Lu + f.

It will be assumed that

(i)

{
1. The matrices M and L are both non-singular;
2. |λ(L)| < 1 for all eigenvalues λ(L) of L,

50 Ivan Dimov

that is, all values λ(L) for which

Lu = λ(L)u

is satisfied. If the conditions (i) are fulfilled, then (3.15), (3.16) become a stationary
linear iterative Monte Carlo algorithm.

As a result the convergence of the Monte Carlo algorithm depends on truncation
error of (3.10).

Problem P2. Inverting of matrices, i.e. evaluating of matrix

C = A−1,

where A ∈ IRm×m is a given real matrix.
Assumed that the following conditions are fulfilled:

(ii)

{
1. The matrix A is non-singular;
2. ||λ(A)| − 1| < 1 for all eigenvalues λ(A) of A.

Obviously, if the condition (i) is fulfilled, the solution of the problem P1 can be
obtained using the iterations (3.10).

For problem P2 the following iterative matrix:

L = I − A

can be constructed.
Since it is assumed that the conditions (ii) are fulfilled, the inverse matrix C = A−1

can be presented as

C =
∞∑

i=0

Li.

For the problems Pi(i = 1,2) one can create a stochastic process using the matrix
L and vectors f and h.

Consider an initial density vector p = {pi}m
i=1 ∈ IRm, such that pi ≥ 0, i = 1, . . . , m

and
∑m

i=1 pi = 1.
Consider also a transition density matrix P = {pij}m

i,j=1 ∈ IRm×m, such that
pij ≥ 0, i, j = 1, . . . , m and

∑m
j=1 pij = 1, for any i = 1, . . . ,m.

Define sets of permissible densities Ph and PL.

Definition 3.2.1 The initial density vector p = {pi}m
i=1 is called permissible to the

vector h = {hi}m
i=1 ∈ IRm , i.e. p ∈ Ph, if

pi > 0, when hi 6= 0 and pi = 0, when hi = 0 for i = 1, . . . , n.

The transition density matrix P = {pij}m
i,j=1 is called permissible to the matrix

L = {lij}m
i,j=1, i.e. P ∈ PL, if

pij > 0,when lij 6= 0 and pij = 0, when lij = 0 for i, j = 1, . . . ,m.

Monte Carlo Methods 51

Note that the set of permissible densities is a subset of tolerant densities, defined
in Section 2.4.4.

Consider the following Markov chain:

Ti = k0 → k1 → . . . → ki, (3.18)

where kj = 1, 2, . . . , i for j = 1, . . . , i are natural random numbers.
The rules for constructing the chain (3.18) are:

Pr(k0 = α) = pα, P r(kj = β|kj−1 = α) = pαβ. (3.19)

Assume that
p = {pα}m

α=1 ∈ Ph, P = {pαβ}m
α,β=1 ∈ PL.

Now define the random variables Qν using the formula (3.16). One can see, that
the random variables Qν , ν = 1, . . . , i can also be considered as weights on the Markov
chain (3.19).

From all possible permissible densities we choose the following

p = {pα}m
α=1 ∈ Ph, pα =

|hα|∑m
α=1 |hα| ;

P = {pαβ}m
α,β=1 ∈ PL, pαβ =

|lαβ|∑m
β=1 |lαβ| , α = 1, . . . , m. (3.20)

Such a choice of the initial density vector and the transition density matrix leads
to an Almost Optimal Monte Carlo (MAO) algorithm. The initial density vector
p = {pα}m

α=1 is called almost optimal initial density vector and the transition density
matrix P = {pαβ}m

α,β=1 is called almost optimal density matrix [Di91].
Let us consider Monte Carlo algorithms with absorbing states: instead of the finite

random trajectory Ti in our algorithms we consider an infinite trajectory with a state
coordinate δq(q = 1, 2, . . .). Assume δq = 0 if the trajectory is broken (absorbed) and
δq = 1 in other cases. Let

∆q = δ0 × δ1 × . . .× δq.

So, ∆q = 1 up to the first break of the trajectory and ∆q = 0 after that.
It is easy to show, that under the conditions (i) and (ii), the following equalities

are fulfilled:
E{Qifki

} = (h, Lif), i = 1, 2, . . . ;

E{
n∑

i=0

Qifki
} = (h, u), (P1),

E{ ∑

i|ki=r′
Qi} = crr′ , (P2),

where (i|ki = r′) means a summation only for weights Qi for which ki = r′ and
C = {crr′}n

r,r′=1.

52 Ivan Dimov

3.3 Convergence and Mapping

In this section we consider Monte Carlo algorithms for solving linear systems of equa-
tions and matrix inversion in the case when the corresponding Neumann series does
not converge, or converge slowly.

To analyze the convergence of Monte Carlo algorithms consider the following
functional equation

u− λLu = f, (3.21)

where λ is some parameter. Note that the matrices can be considered as linear
operators. Define resolvent operator (matrix) Rλ by the equation

I + λRλ = (I − λL)−1,

where I is the identity operator.
Let λ1, λ2, . . . be the eigenvalues of the equation (3.21), where it is supposed that

|λ1| ≥ |λ2| ≥ . . .

Monte Carlo algorithms are based on the representation

u = (I − λL)−1f = f + λRλf,

where
Rλ = L + λL2 + . . . , (3.22)

The systematic error of (3.22) when µ terms are used is

rs = O[(|λ|/|λ1|)µ+1µρ−1], (3.23)

where ρ is the multiplicity of the roots of λ1.
From (3.23) is follows that when λ is approximately equal to λ1 the sequence

(3.22) and the corresponding Monte Carlo algorithm converges slowly. When λ ≥ λ1

the algorithm does not converge.
Obviously, the representation (3.22) can be used for λ : |λ| < |λ1| to achieve

convergence.
Thus, there are two problems to consider.

Problem 1. How can the convergence of the Monte Carlo algorithm be
accelerated when the corresponding Neumann series converges slowly,

and

Problem 2. How can a Monte Carlo algorithm be constructed when
the sequence (3.22)

Rλ = L + λL2 + . . . ,

does not converge.

Monte Carlo Methods 53

To answer these questions we apply a mapping of the spectral parameter λ in
(3.21).

The algorithm under consideration follows an approach which is similar to the
algorithm used by L. Kantorovich & G. Akilov [KA77] and K. Sabelfeld [Sa89] for
integral equations. In [KA77] the mapping approach is used for solving some problems
of numerical analysis.

To extend these results it is necessary to show that the mapping approach can be
extended for any linear operators (including matrices).

Consider the problem of constructing the solution of (3.21) for λ ∈ Ω and λ 6=
λk, k = 1, 2, . . ., where the domain Ω is a domain lying inside the definition domain of
the Rλf , such that all eigenvalues are outside of the domain Ω. In the neighborhood
of the point λ = 0 (λ = 0 ∈ Ω) the resolvent can be expressed by the series

Rλf =
∞∑

k=0

ckλ
k,

where

ck = Lk+1f.

Consider the variable α in the unit circle on the complex plane ∆(|α| < 1).
The function

λ = ψ(α) = a1α + a2α
2 + . . . ,

maps the domain ∆ into Ω. Now it is possible to use the following resolvent

Rψ(α)f =
∞∑

j=0

bjα
j , (3.24)

where

bj =
j∑

k=1

d
(j)
k ck

and

d
(j)
k =

1

j!

[
∂j

∂αj
[ψ(α)]k

]

α=0

.

It is clear, that the domain Ω can be chosen so that it will be possible to map the
value λ = λ∗ into point α = α∗ = ψ−1(λ∗) for which the sequence (3.24) converges;
hence the solution of the functional equation (3.21) can be presented in the following
form:

u = f + λ∗Rψ(α∗)f,

where the corresponding sequence for Rψ(α)f converges absolutely and uniformly in
the domain ∆.

54 Ivan Dimov

This approach is also helpful when the sequence (3.22) converges slowly.
To apply this approach one needs some information about the spectrum of the

linear operator (respectively, the matrix). Let us assume, for example, that all eigen-
values λk are real and λk ∈ (−∞,−a], where a > 0 . Consider a mapping for the case
of interest (λ = λ∗ = 1):

λ = ψ(α) =
4aα

(1− α)2
. (3.25)

The sequence Rψ(α)f for the mapping (3.25) converges absolutely and uniformly
[KA77].

In Monte Carlo calculations we cut the sequence in (3.24) after µ terms

Rλ∗f ≈
µ∑

k=1

bkα
k
k =

µ∑

k=1

αk
∗

k∑

i=1

d
(k)
i ci =

µ∑

k=1

g
(µ)
k ck, (3.26)

where

g
(µ)
k =

µ∑

j=k

d
(j)
k αj

∗. (3.27)

The coefficients

d
(j)
k = (4a)kqk,j

and g
(µ)
k can be calculated in advance.

The coefficients d
(j)
k for the mapping (3.26) are calculated and presented in Table

3.1 (for k, j ≤ 9) .

k/j 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 1 4 10 20 35 42 84 120
3 1 6 21 56 126 252 462
4 1 8 36 120 330 792
5 1 10 55 220 715
6 1 12 78 364
7 1 14 105
8 1 16
9 1

Table 3.1: Table of the coefficients qk,j = (4a)−kd
(j)
k for k, j ≤ 9

It is easy to see that the coefficients qk,j are the following binomial coefficients

qk,j = C2k−1
k+j−1.

Monte Carlo Methods 55

In order to calculate the iterations ck = Lk+1f a Monte Carlo algorithm has to be
used.

The mapping (3.25) creates the following Monte Carlo iteration process

u0 = f

u1 = 4aLu0

u2 = 4aLu1 + 2u1 (3.28)

u3 = 4aLu2 + 2u2 − u1

uj = 4aLuj−1 + 2uj−1 − uj−2, j > 2.

and from (3.28) we have

u(k) = 4aαLu(k−1) + 2αu(k−1) − α2u(k−2) + f(1− α2), k > 2.

3.4 A Highly Convergent Algorithm for Systems

of Linear Algebraic Equations

Suppose we have a Markov chain with i states. The random trajectory (chain) Ti of
length i starting in the state k0 was defined in Section 3.2 as follows

Ti = k0 → k1 → · · · → kj → · · · → ki,

where kj means the number of the state chosen, for j = 1, 2, · · · , i.
Assume that

P (k0 = α) = pα, P (kj = β|kj−1 = α) = pαβ,

where pα is the probability that the chain starts in state α and pαβ is the transition
probability to state β after being in state α. Probabilities pαβ define a transition
matrix P ∈ IRm×m. We require that

m∑

α=1

pα = 1,
m∑

β=1

pαβ = 1, for any α = 1, 2, ...,m.

Suppose the distributions created from the density probabilities pα and pαβ are
permissible, i.e. p ∈ Ph and P ∈ PL.

Now consider the problem of evaluating the inner product (3.12) J(u) = (h, u) =∑m
α=1 hαuα of a given vector h with the vector solution of the system (3.14).
Define the random variable θ∗µ[h]

θ∗µ[h] =
hk0

p0

µ∑

ν=0

g(µ)
ν Qνfkν , (3.29)

56 Ivan Dimov

where Q0 = 1, g
(µ)
0 = 1 and

Qν = Qν−1
lkν−1,kν

pkν−1,kν

, ν = 1, 2, . . . ,

(k0, k1, k2, . . . is a Markov chain with initial density function pk0 and transition density

function pkν−1,kν) and coefficients g
(µ)
j are defined by (3.27) for j ≥ 1.

The following theorem is proved:

Theorem 3.4.1 Consider matrix L, whose Neumann series (3.22) does not con-
verge. Let (3.25) be the required mapping, so that the presentation (3.26) exists.
Then

E

{
lim

µ→∞
hk0

p0

µ∑

ν=0

g(µ)
ν Qνfkν

}
= (h, u).

Sketch of proof:
First consider the density of the Markov chain k0 → k1 → . . . → ki as a point in

m(i + 1)-dimensional Eucledian space Ti+1 = IRm × . . .× IRm

︸ ︷︷ ︸
i+1

:

P{k0 = t0, k1 = t1, . . . , ki = ti} = p0pt0t1pt1t2 . . . pti−1ti .

Now calculate the mathematical expectation of the random variable

hk0

p0

g(µ)
ν Qνfkν .

From the definition of the mathematical expectation it follows that:

E

{
hk0

p0

g(µ)
ν Qνfkν

}
=

µ∑

t0,...,tν=1

ht0

p0

g(µ)
ν Qνftνp0pt0t1 . . . ptν−1tν =

µ∑

t0,...,tν=1

ht0lt0t1lt1t2 . . . ltν−1tνftν = (h, Lνf).

The existence and convergence of the sequence (3.27) ensures the following repre-
sentations:

µ∑

ν=0

E

∣∣∣∣∣
hk0

p0

g(µ)
ν Qνfkν

∣∣∣∣∣ =
µ∑

ν=0

(|h|, |L|ν |f |) =

(
|h|,

µ∑

ν=0

|L|ν |f |
)

,

E

{
lim

µ→∞
hk0

p0

µ∑

ν=0

g(µ)
ν Qνfkν

}
=

∞∑

ν=0

E

{
hk0

p0

g(µ)
ν Qνfkν

}
=

∞∑

ν=0

(h, Lνf) = (h, u). ♦

This theorem permits the use of the random variable θ∗µ[h] for calculating the
inner product (3.12).

Monte Carlo Methods 57

For calculating one component of the solution , for example the ”r”th component
of u, we must choose

h = e(r) = (0, ..., 0, 1, 0, ..., 0)T ,

where the one is in the ”r”th position. It follows that

(h, u) =
m∑
α

eα(r)uα = ur

and the corresponding Monte Carlo algorithm is given by

ur ≈ 1

n

n∑

s=1

θ∗µ[e(r)]s,

where n is the number of chains and

θ∗µ[e(r)]s =
µ∑

ν=0

g(µ)
ν Qνfkν ;

Qν =
lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

.

To find the inverse C = {crr′}m
r,r′=1 of some matrix A we must first compute the

elements of the matrix

L = I − A, (3.30)

where I is the identity matrix. Clearly the inverse matrix is given by C =
∑∞

i=0 Li,
which converges if ‖L‖ < 1. If the last condition is not fulfilled or if the corresponding
Neumann series converges slowly we can use the same technique for accelerating the
convergence of the algorithm.

Estimate the element crr′ of the inverse matrix C
Let the vector f given by (3.21) be the following unit vector

fr′ = e(r′).

Theorem 3.4.2 Consider matrix L, whose Neumann series (3.22) does not con-
verge. Let (3.25) be the required mapping, so that representation (3.26) exists. Then

E

{
lim

µ→∞

µ∑

ν=0

g(µ)
ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

fr′

}
= crr′ .

Sketch of proof: The proof is similar to the proof of Theorem 3.4.1, but in
this case we need to consider an unit vector e(r) instead of vector h and vector e(r′)
instead of fkν :

E

{
e(r)

1
g(µ)

ν Qνfkν

}
= (e(r), Lνf) = (Lνf)r .

58 Ivan Dimov

So, in this case the ”r”-th component of the solution is estimated:

ur =
m∑

i=1

crifi

When fr′ = e(r′), one can get:
ur = crr′ ,

that is:

E

{
lim

µ→∞

µ∑

ν=0

g(µ)
ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1kν

e(r′)

}

= lim
µ→∞

∞∑

ν=0

E

{
g(µ)

ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1kν

e(r′)

}
=

∞∑

ν=0

(e(r), Lνe(r′))

=

(
e(r),

∞∑

ν=0

Lνe(r′)

)
=

m∑

i=1

crie(r
′) = crr′ . ♦

Theorem 3.4.2 permits the use of the following Monte Carlo algorithm for calcu-
lating elements of the inverse matrix C:

crr′ ≈ 1

n

n∑

s=1

µ∑

(ν|kν=r′)
g(µ)

ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

s

,

where (ν|kν = r′) means that only the variables

Q(µ)
ν = g(µ)

ν

lrk1lk1k2 . . . lkν−1kν

prk1pk1k2 . . . pkν−1pν

for which kν = r′ are included in the sum (3.30).
Observe that since Q(µ)

ν is only contained in the corresponding sum for r′ =
1, 2, . . . , m then the same set of n chains can be used to compute a single row of
the inverse matrix, an important saving in computation which we exploit later.

3.4.1 Balancing of the errors

As it was mentioned in the introduction of Chapter 3 there are two errors in Monte
Carlo algorithms: systematic and stochastic. It is clear that in order to obtain good
results the stochastic error rn (the probable error) must be approximately equal to
the systematic one rs, that is

rn = O(rs).

The problem of balancing the error is closely connected with the problem of ob-
taining an optimal ratio between the number of realizations n of the random variable
and the mean value T of the number of steps in each random trajectory µ, i.e.,
T = E(µ).

Monte Carlo Methods 59

Let us consider the case when the algorithm is applied to Problem 1. Using
the mapping procedure and a random variable, defined by (3.29) we accelerate the
convergence of the algorithm proposed by Curtiss [Cu54],[Cu56]. This means that for
a fixed number of steps µ

rs(µ) < r(C)
s (µ), (3.31)

where r(C)
s (µ) is the systematic error of the Curtiss algorithm and rs(µ) is the sys-

tematic error of the algorithm under consideration. A similar inequality holds for the
probable errors. Since g

(µ)
k it follows that

σ(θ∗) < σ(θ) (3.32)

and thus
rn(σ(θ∗)) < r(C)

n (σ(θ)), (3.33)

where r(C)
n is the probable error for the Curtiss algorithm.

Next consider the general error

R = rn(σ) + rs(µ)

for matrix inversion by our Monte Carlo approach. Let R be fixed. Obviously from
(3.31) and (3.32) it follows that there exist constants cs > 1 and cn > 1, such that

r(C)
s (µ) = csrs,

r(C)
n (σ) = cnrn.

Since we are considering the problem of matrix inversion for a fixed general error R,
we have

R = R(C) = r(C)
n (σ) + r(C)

s (µ) = cnrn(σ) + csrs(µ).

This expression shows that both parameters n and T = E(µ) or one of them, say
n, can be reduced. In fact

cσ(θ)/n1/2
c + r(C)

s (µ) = ccnσ(θ∗)/n1/2
c + csrs(µ)

= cσ(θ∗)/n1/2 + rs(µ),

or
cσ(θ∗)/n1/2 = ccnσ(θ∗)/n1/2

c + (cs − 1)rs(µ)

and
1

n1/2
=

cn

n
1/2
c

+
(cs − 1)rs(µ)

cσ(θ∗)
, (3.34)

where nc is the number of realizations of the random variable for Curtiss’ algorithm.
Denote by b the following strictly positive variable

b =
(cs − 1)rs(µ)

cσ(θ∗)
> 0. (3.35)

60 Ivan Dimov

From (3.34) and (3.35) we obtain:

n =
nc(

cn + bn
1/2
c

)2 . (3.36)

The result (3.36) is an exact result, but from practical point of view it may be difficult
to estimate rs(m) exactly. However, it is possible using (3.35) to obtain the following
estimate for n

n <
nc

c2
n

.

This last result shows that for the algorithm under consideration the number of
realizations of the Markov chain n can be at least c2

n times less than the number of
realizations nc of the existing algorithm. Thus it is seen that there are a number of
ways in which we can control the parameters of the fixed size array in [MAD94] In
section 3.4.2 we explore some of these possibilities and develop some comparisons.

3.4.2 Estimators

Some estimates of n and the mathematical expectation for the length of the Markov
chains T for Monte Carlo matrix inversion will now be outlined.

Using an almost optimal frequency function and according to the principle of
collinearity of norms [Di91] pαβ is chosen proportional to the |lαβ| (see, (3.20)). De-
pending on estimates of the convergence of the Neumann series one of the following
stopping rules can be selected to terminate Markov chains:

• (i) when |Q(µ)
ν | < δ;

• (ii) when a chain enters an absorbing state (see, Definition 1.0.8 in the Intro-
duction).

In the case of a Monte Carlo algorithm without any absorbing states (fkj
= δkjβ

if αβ-th entry of inverse matrix can be computed) the bounds of T and Dθ∗ are

T ≤ | log δ|
| log ‖L‖|

and

Dθ∗ ≤ ‖f‖2

(1− ‖L‖)2
≤ 1

(1− ‖L‖)2
.

Consider the Monte Carlo algorithms with absorbing states (see, Section 3.2) where
θ̂[h] denotes a random variable θ̂T [h] (T is the length of the chain when absorption
takes place) taken over an infinitely long Markov chain.

The bounds on T and Dθ̂[h] [Cu54, Cu56] if the chain starts in state r = α and
pαβ = |lαβ|, for α, β = 1, 2, ...,m are

E(T |r = α) ≤ 1

(1− ‖L‖) ,

Monte Carlo Methods 61

and

Dθ̂[h] ≤ 1

(1− ‖L‖)2
.

According to the error estimation (see, Section 2.1, formula (2.6))

n ≥ 0.67452

ε2
Dθ̂[h]

for a given error ε. Thus

n ≥ 0.67452

ε2

1

(1− ‖L‖)2

is a lower bound on n.
If low precision solutions (e.g. 10−2 < ε < 1) are accepted it is clear that n >> m

as n 7→ ∞. Consider n and T as functions of

1

(1− ‖L‖) .

Thus, in both algorithms T is bounded by O(
√

n), since in the Monte Carlo algorithm
without any absorbing states

T <
√

n
ε| log δ|
0.6745

and in the Monte Carlo algorithm with absorbing states

T ≤ √
n

ε

0.6745
.

Results in [DT93] show that T ≈ √
n , for sufficiently large n.

3.5 A New Iterative Monte Carlo Approach for

Linear Systems and Matrix Inversion Problem

In this Section a new approach of the iterative Monte Carlo algorithms for the well
known matrix inversion problem will be presented. The algorithms are based on
special techniques of iteration parameter choice (refined stop-criteria), which permits
to control the convergence of the algorithm for any row (column) of the matrix using
a fine iterative parameter. The choice of this parameter is controlled by a posteriori
criteria for every Monte Carlo iteration. The algorithms under consideration are also
well parallelized.

3.5.1 Formulation of the problem

Here we deal again with Monte Carlo algorithms for calculating the inverse matrix
A−1 of a square matrix A, i.e.

AA−1 = A−1A = I,

62 Ivan Dimov

where I is the identity matrix.

Consider the following system of linear equations:

Au = b, (3.37)

where

A ∈ IRm×m; b, u ∈ IRm×1.

The inverse matrix problem is equivalent to solving m-times the problem (3.37),
i.e.

Acj = bj, j = 1, . . . , m (3.38)

where

bj ≡ ej ≡ (0, . . . , 0, 1, 0, . . . , 0)

and

cj ≡ (cj1, cj2, . . . , cjm)T

is the j-th column of the inverse matrix C = A−1.

Here we deal with the matrix L = {lij}m
ij=1, such that

L = I −DA, (3.39)

where D is a diagonal matrix D = diag(d1, . . . , dm) and

di =
γ

aii

, γ ∈ (0, 1] i = 1, . . . , m.

The system (3.37) can be presented in the following form:

u = Lu + f, (3.40)

where

f = Db.

Let us suppose that the matrix A has diagonally dominant property. In fact, this
condition is too strong and the presented algorithms work for more general matrices,
as it will be shown in Section 3.5.2. Obviously, if A is a diagonally dominant matrix,
then the elements of the matrix L must satisfy the following condition:

m∑

j=1

|lij| ≤ 1 i = 1, . . . , m. (3.41)

Monte Carlo Methods 63

3.5.2 New iterative Monte Carlo algorithms

Here new iterative Monte Carlo algorithms are considered. The first algorithm evalu-
ates every component of the solution u of the following linear algebraic system (3.37).

Algorithm 3.5.1 :

1. Input initial data: the matrix A, the vector b, the constants ε , γ and n.

2. Preliminary calculations (preprocessing):

2.1. Compute the matrix L using the parameter γ ∈ (0, 1]:

{lij}m
i,j=1 =

{
1− γ when i = j
−γ aij

aii
when i 6= j .

2.2. Compute the vector lsum:

lsum(i) =
m∑

j=1

|lij| for i = 1, 2, . . . , m.

2.3. Compute the transition probability matrix P = {pij}m
i,j=1, where

pij =
|lij|

lsum(i)
, i = 1, 2, . . . , m j = 1, 2, . . . , m .

3. For i0 := 1 to m do step 4 and step 5.

4. While (W < ε) do the trajectory

4.1. Set initial values X := 0 , W := 1 ;

4.2. Calculate X := X + Wfi0 ;

4.3. Generate an uniformly distributed random number r ∈ (0, 1);

4.4. Set j := 1;

4.5. If (r <
∑j

k=1 pi0k) then

4.5.1. Calculate W := Wsign(li0j)× lsum(i0) ;

4.5.2. Calculate X := X + Wfj (one move in trajectory);

4.5.3. Update the index i0 := j and go to step 4.3.

else

4.5.4. Update j := j + 1 and go to step 4.5.

5. Calculate the mean value based on n independent trajectories:

5.1. Do ”n”-times step 4;

64 Ivan Dimov

5.2. Calculate Xn and ui0 := Xn.

6. End of the Algorithm 3.5.1.

The Algorithm 3.5.1 describes the evaluation of every component of the solution
of the problem (3.37), which is, in fact, linear algebraic system. Algorithm 3.5.1 is
considered separately, since it (or some of its steps) will be used in next algorithms.
For finding the corresponding ”i”th component of the solution the following functional
is used

V (u) = (v, u),

where v = ei = (0, 0, . . . , 1︸︷︷︸
i

, 0, . . . , 0).

We consider the general description of the algorithm - the iteration parameter γ
is inside the interval (0, 1]

The second algorithm computes the approximation Ĉ to the inverse matrix C =
A−1. The algorithm is based on special techniques of iteration parameter choice. The
choice of the iteration parameter γ can be controlled by a posteriori criteria for every
column of the approximate inverse matrix Ĉ. The every column of this matrix is
computed independently using Algorithm 3.5.1.

Algorithm 3.5.2 :

1. Input initial data: the matrix A, the constant ε , n and the vector γ =
(γ1, γ2, . . . , γl) ∈ (0, 1]l.

2. For j0 := 1 to m do

Calculate the elements of j0-th column of the approximate matrix Ĉ:

2.1. While (k ≤ l) do

2.2. Apply the Algorithm 3.5.1 for γ = γk , n and the right-hand side
vector bj0 = (0, . . . , 0, 1︸︷︷︸

j0

, 0, . . . , 0) to obtain the column - vector ĉk
j0

=

(ck
1j0

, . . . , ck
mj0

).

2.3. Compute the l2-norm of the column - vector ĉk
j0
:

rk
j0

=
m∑

j=1

{
m∑

i=1

ajic
k
ij0
− δjj0}2 .

2.4. If (rk
j0

< r) then

ĉj0 := ck
j0
;

r := rk
j0
.

Monte Carlo Methods 65

3. End of the Algorithm 3.5.2.

Algorithm 3.5.2 is based on Algorithm 3.5.1 finding different columns of the matrix
Ĉ by using corresponding values of the iteration parameter γ = γi, i = 1, 2, . . . , l. The
values of γi are chosen such that to minimize the l2-norm of the following vectors:

Ej = AĈj − IT
j , j = 1, 2, . . . , m, (3.42)

where Ij = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0).

The use of the criteria of minimization of the l2-norm of the vector Ej permits to
find better approximation of the error matrix

E = AĈ − I.

This procedure allows to minimize the norm (for example, the Frobenius norm) of E.
In practice, the parameter γ runs a finite numbers of values in the interval (0, 1].

The evaluation of different columns can be realized in parallel and independently.
The algorithm presented above uses a deterministic approach, which is indepen-

dent of the statistical nature of the algorithm.

Algorithm 3.5.3 :

1. Input initial data: the matrix A, the constant n and the vectors γ = (γ1, γ2, . . . , γl) ∈
(0, 1]l, ε = (ε1, ε2, . . . , εm) and r = (r1, r2, . . . , rm).

2. While (k ≤ l) do

2.1. Step 2 of Algorithm 3.5.1 for γ := γk.

tem2.2. While (i0 ≤ m) and (j0 ≤ m) do step 4 and step 5 of the
Algorithm 3.5.1 to compute the elements ĉk

i0j0
for γ = γk , ε := εi0 and the

right-hand side vector bj0 := (0, . . . , 0, 1︸︷︷︸
j0

, 0, . . . , 0) .

2.3. For i0 := 1 to m do

2.3.1. Calculate

rk
i0

= max
i∈{1,2,...,m}

|
m∑

j=1

ci0jaji − δi0i|.

2.3.2. If (rk
i0

< ri0) then

ĉi0 := ck
i0
;

ri0 := rk
i0
.

3. End of the Algorithm 3.5.3.

66 Ivan Dimov

The difference between the last two algorithms is that the Algorithm 3.5.3 can
not be applied in traditional (non-stochastic) iterative algorithms. The traditional
algorithms allow to evaluate the columns of the inverse matrix in parallel, but they
do not allow to obtain their elements independently from each other. The advantage
of the Monte Carlo algorithms consists in possibilities to evaluate every element of
the inverse matrix in an independent way. This property allows to apply different
iteration approaches for finding the matrix Ĉ using a priori information for the rows
of the given matrix A (for example, the ratio of the sum of the modulus of the
non-diagonal entrances to the value of the diagonal element).

One has to mention that the computational complexity of Algorithm 3.5.3 also
depends on ”how ill-conditioned” is the given row of the matrix A. The given row Ai

of the matrix Ai is ”ill-conditioned”, when the condition

|aii| <
i−1∑

j=1

|aij|+
m∑

j=i+1

|aij|

of diagonally dominating is not fulfilled (but all the eigenvalues lay inside of the unit
circle).

The Algorithm 3.5.3 presented above is very convenient for such matrices since
it chooses the value of the iterative parameter γ for every row of the matrix A. As a
measure of the ill-conditioning of a given row we use the following parameter:

bi =
i−1∑

j=1

|aij|+
m∑

j=i+1

|aij| − |aii|.

The possibility to treat non-diagonally dominated matrices increases the set of
the problems treated using Monte Carlo algorithms. For finding different rows of the
approximation of the inverse matrix Ĉ different number of moves (iterations) can be
used. The number of moves are controlled by some parameter ε. For an a posteriori
criteria we use the minimization of the C-norm of the following row-vector

Ei = ĈiA− Ii, i = 1, . . . , m,

where Ĉi = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0).

The use of the criteria of minimization of the C-norm of the vector Ei permits to
find better approximation of the error matrix

E = ĈA− I. (3.43)

The above mentioned procedure allows to minimize the norm (for example, the
Frobenius norm) of the matrix E.

One can also control the number of moves in the Markov chain (that is the number
of iterations) such that to have a good balance between the stochastic and systematic
error (i.e., the truncation error). The problem of balancing of both - systematic and
stochastic error is very important when Monte Carlo algorithms are used. It is clear

Monte Carlo Methods 67

that in order to obtain good result s the stochastic error (the probable error) rn must
be approximately equal to the systematic one rs, that is

rn = O(rs).

The problem of balancing the errors is closely connected with the problem of ob-
taining an optimal ratio between the number of realizations n of the random variable
and the mean value T of the number of steps in each random trajectory. The bal-
ancing allows to increase the accuracy of the algorithm for a fixed computational
complexity, because in this case one can control the parameter E(Y) by choosing
different lengths of the realizations of the Markov chain. In practice, we choose the
absorbing state of the random trajectory using the well known criteria

|W | < ε.

Such a criteria is widely used in iterative algorithms, but obviously it is not the
best way to define the absorbing states of the random trajectory. It is so, because
for different rows of the matrix A the convergence of the corresponding iterative
process (and, thus, the truncation error) may be different. If the rate of convergence
is higher it is possible to use a higher value for the parameter ε and to cut the random
trajectory earlier then in the case of lower convergence. Our approach permits to use
different stop-criteria for different random trajectories, which allows to optimize the
algorithm is the sense of balancing of errors.

3.5.3 Discussion of the numerical results

As an example we consider matrices arising after applying the mixed finite element
algorithm for the following boundary value problem

∣∣∣∣∣
−div(a(x)∇p) = f(x), in Ω
p = 0, on ∂Ω,

(3.44)

where ∇w denotes the gradient of a scalar function w, divv denotes the divergence
of the vector function v and a(x) is a diagonal matrix whose elements satisfy the
requirements ai(x) ≥ a0 > 0, i = 1, 2.

We set
u ≡ (u1, u2) = a(x)∇p, αi(x) = ai(x)−1, i = 1, 2.

Let us consider the spaces V and W defined by

V = H(div; Ω) = {v ∈ L2(Ω)2 : divv ∈ L2(Ω)},
W = L2(Ω)

provided with the norms

‖v‖V ≡ ‖v‖H(div;Ω) = (‖v‖2
0,Ω + ‖divv‖2

0,Ω)1/2 and

‖w‖W = ‖w‖L2(Ω) = ‖w‖0,Ω

68 Ivan Dimov

respectively.
Then the mixed variational formulation of the problem (3.44) is given by charac-

terizing the pair (u, p), as the solution of

∣∣∣∣∣
a(u, v) + b(v, p) = 0, ∀v ∈ V ;
b(u,w) = − (f, w), ∀w ∈ W,

(3.45)

where

a(u, v) = (αu1, v1) + (αu2, v2), b(u, w) = (divu, w)

and (·, ·) indicated the inner product in L2(Ω).
The mixed finite element approximation of the problem (3.45) in the Raviart-

Thomas spaces leads to the following linear algebraic system:

Ku =

A1 0 B1

0 A2 B2

BT
1 BT

2 0

u1

u2

p

 =

0
0
−f

 , (3.46)

where Ai are m×m matrices, Bi are m×m1 matrices (m1 < m), ui ∈ IRm and
p, f ∈ IRm1 , i = 1, 2.

If A−1
i (i = 1, 2) is obtained then the system (3.46) becomes

Bp = f,

where

B = BT
1 A−1

1 B1 + BT
2 A−1

2 B2

Thus we reduce the 2m + m1-dimensional linear algebraic system to the m1-
dimensional system.

For matrices A = Ai, i = 1, 2 the Algorithm 3.5.2 is applied. Numerical examples
for a matrix A ∈ IR16×16, for different values of the parameter γ are presented.

The values of the parameter γ for different columns of the matrix Ĉ are shown in
Table 3.2.

As a basic test example for applying Algorithm 3.5.3 a matrix of of size 7 is used.
The size of the matrix is relatively small, because our aim was only to demonstrate
how the Algorithm 3.5.3 works. Here we also have to mention that the computational
complexity of the algorithm practically does not depend of the size of the matrix.
Using the technique [DK96] it is possible to show that the computational complexity
of our algorithms depends linearly of the mean value of the number of non-zero
entrances per row. This is very important, because it means that very large sparse
matrices could be treated efficiently using the algorithms under consideration.

During the numerical tests we control the Frobenius norm of the matrices, defined
by

‖ A ‖2
F =

m∑

i=1

m∑

j=1

a2
ij.

Monte Carlo Methods 69

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 10 20 30 40 50 60

Y
 a

xi
s

X axis

 n=400, epsilon=0.0001

 F.N. 0.13932
F.N. 0.10107

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30 35 40 45 50

 n = 1000

 F.N. 0.07305 ’corse’ s. c.
 F.N. 0.05654 ’fine’ s. c.

Figure 3.1
Frobenius norm– non-balanced case

Figure 3.2
Frobenius norm– balanced case

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7 8

 n=400, epsilon=0.0001

F.N. 0.13932
F.N. 0.10107
F.N. 0.10453

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 1 2 3 4 5 6 7 8

 n=1000, epsilon=0.001

F.N. 0.07305
F.N. 0.05654
F.N. 0.05417

Figure 3.3
Non-controlled balance

Figure 3.4
Controlled balance

Some of the numerical results performed are shown on Figure 3.1 – 3.8, provided
by Table 3.3. On all Figures the value of the Frobenius norm is denoted by F.N., the
number of realizations of the random variable (i.e., the number of random trajectories)
is denoted by n and the value of the stop-criteria is denoted by ε. In Algorithm
3.5.3 we use m values of ε (in our case m = 7).

Figure 3.1 presents the values of the error matrix (3.43) in the both cases under
consideration – coarse stop criteria (’ ♦ ’) and fine stop criteria (’+’). The first set of
connected points corresponds to values of the first row of the error matrix, the second
set – to the second row of the same matrix, etc. When the coarse stop criteria is
used ε = 0.0001. When the fine stop criteria is used different values of ε are applied
such that the computational complexity is smaller (in comparison with the case if
the coarse stop criteria) (see, also Table 3.3). The values of the Frobenius norm for
both cases when the number of realizations n is equal to 400 are also given. For such

70 Ivan Dimov

 n=400, epsilon=0.0001

0
1

2
3

4
5

6 0
1

2
3

4
5

6

0

1

2

3

4

5

6

7

X axis

Y axis

 F.N. 0.13932

 n=400, epsilons=0.01, 0.0005, 0.00001, 0.000001, 0.0001, 0.0005, 0.01

0
1

2
3

4
5

6 0
1

2
3

4
5

6

0

1

2

3

4

5

6

7

X axis

Y axis

F.N. 0.10107

Figure 3.5
Coarse stop-criteria

Figure 3.6
Use of different fine stop-criteria

number of realizations the stochastic error is relatively large in comparison with the
systematic one. So, the results on Figure 3.1 correspond to the non-balanced case.

The similar results, but for the case of n = 1000 and ε = 0.001 (for the coarse
stop criteria) are presented on Figure 3.2. One can see, that

• ε is 10 times large then in the previous case, but the Frobenius norm is about
two times smaller, because the number of realizations is larger.

The results presented on Figure 3.1 and Figure 3.2 show the statistical convergence
of the algorithm, i.e. the error decreases when n increases (even in the case when the
parameter ε increases).

These results show how important is to have a good balancing between the sto-
chastic and systematic error. The computational effort for the cases presented on
Figure 3.1 and Figure 3.2 is approximately equal, but the results in the case of Figure
3.2, when we have a good balancing are almost 2 times better.

Let us discuss the result presented on Figures 3.3 and 3.4. Here instead of el-
ements of the error matrix the maximum of the modulo element for every row are
shown. If the computational complexity for a constant ε is denoted by Rc and and
the computational complexity when different values of ε = εi, i = 1, . . . , m is denoted
by Rf we consider the case when

Rc ≥ Rf = 1.

The results presented on Figures 3.3 and 3.4 show that apart from the less compu-
tational complexity Rf of the fine stop criteria algorithm it gives better results than
the coarse stop criteria algorithm with complexity Rc. This fact is observed in both
cases - balanced (Figure 3.3) and non-balanced (Figure 3.4).

• the variations of the estimations are smaller when the balancing is better;

• the Frobenius norm is smaller, when the control ”row per row” is realized.

Monte Carlo Methods 71

column l1 norm C norm
number ε = 0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001

1 1 0.9 0.6 0.2 0.5 0.1 1 1
2 0.4 0.8 0.9 0.8 0.5 0.9 0.6 1
3 1 0.8 0.8 0.9 0.5 1 0.3 0.1
4 0.5 1 0.7 0.7 0.3 0.3 1 0.9
5 0.9 0.5 0.9 0.9 1 1 0.9 0.8
6 0.8 0.1 0.6 0.6 1 0.8 0.9 0.8
7 0.5 0.1 0.9 0.9 0.8 0.4 0.9 1
8 0.5 0.1 0.6 0.9 0.8 0.8 0.3 1
9 0.5 0.1 0.6 0.6 0.6 1 1 0.2
10 0.5 0.1 0.6 0.3 0.6 1 0.4 0.5
11 0.5 0.1 0.6 0.3 0.5 0.1 1 0.5
12 0.5 0.1 0.6 0.3 0.7 0.8 1 0.8
13 0.5 0.1 0.6 0.3 1 1 0.4 0.9
14 0.5 1 0.6 0.3 0.9 0.9 0.4 1
15 1 0.1 0.8 0.9 1 1 1 0.4
16 0.9 0.3 0.6 0.1 1 1 0.9 0.6

Table 3.2: Connection between ε and the parameter γ. Here m = 16 , n = 24.

not balanced case balanced case
γ ’coarse’ s. c. ’fine’ s. c. ’coarse’ s. c. ’fine’ s. c.

0.2 1.0806 1 1.0368 1
0.4 1.0903 1 1.0351 1
0.6 1.0832 1 1.0348 1
0.8 1.0910 1 1.0360 1
1 1.0862 1 1.0342 1

generally 1.0848 1 1.0358 1

Table 3.3: Computational complexity

72 Ivan Dimov

 n=1000, epsilon=0.001

0
1

2
3

4
5

6 0
1

2
3

4
5

6

0

0.5

1

1.5

2

2.5

3

3.5

4

X axis

Y axis

 F.N. 0.07305

 n=1000, epsilons=0.05, 0.002, 0.002,0.000001, 0.0003, 0.002,0.05

0
1

2
3

4
5

6 0
1

2
3

4
5

6

0

0.5

1

1.5

2

2.5

3

3.5

4

X axis

Y axis

 F.N. 0.05654

Figure 3.7
Controlled balancing – coarse stop

criteria

Figure 3.8
Controlled balancing – fine stop

criteria

Figures 3.5 and 3.6 present test results for the modulo of every element of the
error matrix (3.43) when the coarse stop criteria and fine stop criteria respectively
are used in the non-balanced case.

One can see, that

• the Frobenius norm of the estimate in the case of fine stop criteria is about 1.4
times smaller than the corresponding value for the coarse stop criteria, and

• the variances of the estimate of the case of fine stop criteria are smaller.

Figures 3.7 and 3.8 show the corresponding results as on Figures 3.5 and 3.6 in
the balanced case. One can make the same conclusion as in the non balanced case,
but here

• the Frobenius norm is almost 2 times smaller.

3.5.4 Conclusion

An iterative Monte Carlo algorithm is presented and studied. This algorithm can be
applied for solving of inverse matrix problems.

The following conclusion can be done:

• Every element of the inverse matrix A−1 can be evaluated independently from
the other elements (this illustrates the inherent parallelism of the algorithms
under consideration);

• Parallel computations of every column of the inverse matrix A−1 with different
iterative procedures can be realized;

Monte Carlo Methods 73

• It is possible to optimize the algorithm using error estimate criterion ”column
by column”, as well as ”row by row”;

• The balancing of errors (both, systematic and stochastic) allows to increase the
accuracy of the solution if the computational effort is fixed or to reduce the
computational complexity if the error is fixed.

The studied algorithm is easily programmable and parallelizable and can be effi-
ciency implemented on MIMD-machines.

3.6 Monte Carlo Algorithms for Computing Eigen-

values

In this section a new Monte Carlo approach for evaluating the eigenvalues of real
symmetric matrices shall be proposed. Algorithms for both - largest and smallest
eigenvalue will be considered. It is known that the problem of calculating the small-
est eigenvalue of a matrix A is more difficult from numerical point of view than the
problem of evaluating the largest eigenvalue. Nevertheless, for many important appli-
cations in physics and engineering it is necessary to estimate the value of the smallest
eigenvalue, because it usually defines the most stable state of the system which is
described by the considered matrix. Therefore we shall consider algorithms for the
smallest eigenvalue.

There are, also, many problems in which it is important to have an efficient
algorithm which is parallel and/or vectorizable. And for matrices with a large size
which often appear in practice it is not easy to find efficient algorithms for evaluating
the smallest eigenvalue when modern high–speed vector or parallel computers are
used. Let us consider as an example, the problem of plotting the spectral portraits
of matrices which is one of the important problems where highly efficient vector and
parallel algorithms are needed 1.

1In fact, the pseudo-spectrum or ε-spectrum [Go91], [Tr91] of a matrix B is defined by

σε =
{

z ∈ C : ‖(zI −B)−1‖2 ≥ 1
ε

}
.

The main problem related to computing the spectral portrait, consists in the evaluation of

z → ‖(zI −B)−1‖2 for z ∈ C.

It is clear that (3.4) can be represented as

z → 1
σmin(zI −B)

,

where σmin(G) is the smallest singular value of G. The evaluation of the smallest singular value
of a matrix can be performed in different ways. We use the following representation for evaluating
σmin(zI −B):

σmin(zI −B) =
√

λmin((zI −B)∗(zI −B)),

74 Ivan Dimov

The spectral portraits are used in stability analysis. The above mentioned prob-
lem leads to a large number of subproblems of evaluating the smallest eigenvalue of
symmetric matrices.

Two Monte Carlo Almost Optimal (MAO) algorithms will be presented. The
first one is called Resolvent Monte Carlo algorithm (RMC) and uses Monte Carlo
iterations by the resolvent matrix. The second one is called Inverse Monte Carlo
Iterative algorithm (IMCI) and uses the representation of the smallest eigenvalue by
inverse Monte Carlo iterations.

Estimators for speedup as well as for parallel efficiency are considered for different
typical models of computer architectures.

Results of numerical tests for a number of matrices - general symmetric dense
matrices, sparse symmetric matrices (including band sparse symmetric matrices) with
different behaviors will be discussed.

3.6.1 Formulation of the problem

Consider the following problem of evaluating eigenvalues:

Au = λ(A)u. (3.47)

It is assumed that

(iii)

{
1. A is a symmetric matrix, i.e. aij = aji for all i, j = 1, . . . , m;
2. λmin = λm < λm−1 ≤ λm−2 ≤ . . . ≤ λ2 < λ1 = λmax.

under the conditions (iii) the following equality is fulfilled:

E{Wifki
}

E{Wi−1fki−1
} ≈ λ1(A), for sufficiently large ”i”.

3.6.2 The Resolvent Monte Carlo algorithm (RMC)

Now consider an algorithm based on Monte Carlo iterations by the matrix A resolvent
operator [I − qA]−1.

It is known [KA77] that

[I − qA]−r =
∞∑

i=0

qiCi
r+i−1A

i, |q|λ < 1;

the eigenvalues of the operators [I − qA]−1 and A are connected with the equality
µ = 1

(1−qλ)
, and the eigenfunctions coincide. Accordingly eigenvalues of the matrix A,

where (zI −B)∗ denotes the conjugate transpose of (zI −B).
So, the problem consists in evaluating the smallest eigenvalue of a matrix A. Here we consider

the case, when A = (zI∗ −B)(zI −B) is a symmetric matrix.

Monte Carlo Methods 75

assuring the convergence of the Monte Carlo iterations, yield the following expression

µ =
([I − qA]−rf, h)

([I − qA]−(r−1)f, h)
→r→∞ µ =

1

1− qλ
, f ∈ IRm×1, h ∈ IRm×1.

For negative values of q, the largest µ, µ1, corresponds to the smallest eigenvalue
λmin of the matrix A.

Now, for constructing the algorithm it is sufficient to note that

([I − qA]−rf, h) =
∞∑

i=0

qiCi
r+i−1(A

if, h)

≈ E
n∑

i=0

qiCi
r+i−1Wih(xi).

After some calculations we obtain

λ ≈ 1

q

(
1− 1

µ(r)

)
=

(A[I − qA]−rf, h)

([I − qA]−rf, h)

=
E

∑∞
i=1 qi−1Ci−1

i+r−2Wih(xi)

E
∑∞

i=0 qiCi
i+r−1Wih(xi)

.

The coefficients Cn
n+m are calculated using the representation

Ci
i+r = Ci

i+r−1 + Ci−1
i+r−1.

Let A = {aαβ}m
α,β=1 be m × m symmetric matrix. Consider a permissible to

the vector h = {hα}m
α=1 ∈ IRm×1 transition density vector p = (p1, p2, . . . , pm) =

{pα}m
α=1 ∈ Ph and a permissible to the matrix A = {aαβ}m

α,β=1 ∈ IRm×m transition
density matrix P = {pαβ}m

α,β=1 ∈ PA, defined in Section 3.2.
Obviously, pα and pαβ are to be nonnegative and satisfy the conditions

m∑

α=1

pα = 1,
m∑

β=1

pαβ = 1, for any α = 1, 2, ...,m. (3.48)

The value pα might be interpreted as the probability that the initial point of the
trajectory will fall on hα, and pαβ as the probability that the random process will
pass on the element of β-th column of the α-th row. Under this interpretation it is
sufficient to consider the following Markov chain:

Ti = k0 → k1 → . . . → ki. (3.49)

Construct the chain of random variables (3.49), whose values can be ranged from
1 to n. The rules for constructing the chain (3.49) are:

P (k0 = α) = pα, P (kj = β|kj−1 = α) = pαβ, (3.50)

where the initial probabilities pα and the transition probabilities pαβ satisfy the con-
ditions (3.48). The chains (3.50) are Markov chains with finite number of states.

76 Ivan Dimov

Now consider the random variable Wj introduced above (Wj can also be accepted
as weights on the Markov chain states). Let

Wj =
ak0k1ak1k2 . . . akj−1kj

pk0k1pk1k2 . . . pkj−1kj

, W0 =
hk0

pk0

, (3.51)

or, using a recursion formula,

Wj = Wj−1(akj−1kj
/pkj−1kj

), j = 1, . . . , n, W0 =
hk0

pk0

.

From all possible permissible initial density vectors p = {pα}m
α=1 and from all pos-

sible permissible transition density matrices P = {pαβ}m
α,β=1 we choose the following

p = {pα}m
α=1, pα = |hα|/

(
m∑

α=1

|hα|
)

,

and

P = {pαβ}m
α,β=1, pαβ = |aαβ|/

m∑

β=1

|aαβ|

 , for α = 1, 2, . . . , m,

so that we have a MAO algorithm, defined in Section 3.2.
From the representation

µ(r) =
1

1− |q|λ(r)
≈ (h, [I − qA]−rf)

(h, [I − qA]−(r−1)f)
,

we obtain the following Resolvent Monte Carlo (RMC) algorithm for evaluating the
smallest eigenvalue:

λ ≈ 1

q

(
1− 1

µ(r)

)
≈ E

∑l
i=0 qiCi

i+r−1Wi+1h(xi)

E
∑l

n=0 qiC i
i+r−1Wih(xi)

,

where W0 =
hk0

pk0
and Wi are defined by (3.51).

The parameter q < 0 has to be chosen so as to minimize the following expression

J(q, A) =
1 + |q|λ1

1 + |q|λ2

,

or, if λ1 = αλ2, (0 < α < 1),

J(q, A) = 1− |q|λ2(1− α)

1 + |q|λ2

.

We choose

q = − 1

2‖A‖ ,

Monte Carlo Methods 77

but sometimes slightly different value of q may give better results when a number of
realizations of the algorithm is considered.

Since the initial vector f can be any vector f ∈ IRm×1 the following formula for
calculating λmin is used

λ ≈ E{W1 + qC1
r W2 + q2C2

r+1W3 + . . . + qlC l
l+r−1Wl+1}

E{1 + qC1
r W1 + q2C2

r+1W2 + . . . + qlC l
l+r−1Wl} ,

that is

λ ≈
1
N

∑n
s=1{

∑l
i=0 qiCi

i+r−1Wi+1}s

1
n

∑n
s=1{

∑l
i=0 qiCi

i+r−1Wi}s

Now we can formulate a Resolvent Monte Carlo algorithm (RMC) for
evaluating the smallest eigenvalue of symmetric matrices

Algorithm 3.6.1
1. Choose an initial row of the matrix A = {aij}m

i,j=1 as a realization of the
density p0 permissible to the vector h: divide the interval [0, 1] in subintervals with
lengths proportional of the vector coordinates h1, h2, . . . , hm:

4pi = c|hi|, i = 1, . . . , n, (3.52)

where c is a constant. Then generate a random number in [0, 1].
Suppose the element hk0 has been chosen.
2. Consider the ”k0”th row of the matrix A. Choose an element of ”k0”th row

as a realization of the transition density function pk0k1 in the following way: divide
the interval [0, 1] into subintervals 4pi, i = 1, . . . , m, proportional to the row
elements

4pi = ck0|ak0i|, i = 1, 2, . . . , m, (3.53)

where ck0 is a constant, and generate a random number in [0, 1]. Let the chosen
element be ak0k1.

3. Consider the ”k1”th row of the matrix A and repeat the procedure 2 using
density functions pk0k1. Continue this procedure until determining the element akiki+1

according to the density pkiki+1
.

4.Compute the random variables (for a fixed integer value of l and m)

θ[u](1)
ν [h,A] =

ν∑

i=0

qiCi
i+r−1Wi+1, ν = l − 1, l (3.54)

θ[d](1)
ν [h,A] =

ν∑

i=0

qiC i
i+r−1Wi, ν = l − 1, l (3.55)

where

Wi =
hk0

pk0

ak0k1ak1k2 . . . aki−1ki

pk0k1pk1k2 . . . pki−1ki

.

78 Ivan Dimov

5. Go to 1 and repeat steps 1, 2, 3 and 4. Do n − 1 new realizations of the
random variables θ[u](s)ν [h,A]: θ[u](2)

ν , θ[u](3)
ν , . . . , θ[u](n)

ν and θ[d](s)ν [h,A]: θ[d](2)
ν ,

θ[d](3)
ν , . . . , θ[d](n)

ν .
6. Calculate

θ[u]ν [h, A] =
1

n

n∑

s=1

θ[u](s)ν [h,A], for ν = l − 1, l. (3.56)

θ[d]ν [h, A] =
1

n

n∑

s=1

θ[d](s)ν [h,A], for ν = l − 1, l. (3.57)

7. Compute the current approximation of the eigenvalue:

λ(l−1) =
θ[u]l−1[h,A]

θ[d]l−1[h,A]

and

λ(l) =
θ[u]l[h,A]

θ[d]l[h, A]

8. If

|λ(l) − λ(l−1)| < ε (3.58)

then stop iterations . Else continue iterations using steps 4,5,6 untill reaching
new values of the parameters l and r and check the inequality (3.58).

The process continue until the inequality (3.58) is fulfilled or until a very large
number of iterations l or very high power r of the resolvent matrix is reached.

3.6.3 The Inverse Monte Carlo Iterative algorithm (IMCI)

Here an Inverse Monte Carlo Iterative algorithm (IMCI) is considered.
This algorithm can be applied when A is a non-singular matrix. The algorithm

has a high efficiency when the smallest by modulus eigenvalue of A is much smaller
then other eigenvalues. This algorithm can be realized as follows:

1. Calculate the inverse of the matrix A.
2. Starting from the initial vector f0 ∈ Rm×1 calculate the sequence of Monte

Carlo iterations:

f1 = A−1f0, f2 = A−1f1 . . . , fi = A−1fi−1, . . .

The vectors fi ∈ Rm×1 converge to the eigenvector corresponding to the smallest
by modulus eigenvalue of A. In fact, we calculate the functionals

(Afi, hi)

(fi, hi)
=

(fi−1, hi)

(fi, hi)
.

Monte Carlo Methods 79

It is not necessary to calculate A−1 because the vectors fk can be evaluated by
solving the following system of equations:

Af1 = f0

Af2 = f1

. . .

Afi = fi−1.

When using Monte Carlo algorithms it is more efficient first to evaluate the inverse
matrix using the algorithm proposed in [MAD94] and after that to apply the Monte
Carlo iterations.

3.6.4 Numerical tests

In this subsection numerical results obtained by means of both RMC and IMCI al-
gorithms will be presented. The code is written in FORTRAN 77 and C++ and is
performed on supercomputers Intel-PARAGON and CRAY Y–MP C92A.

Numerical tests are performed for a number of test matrices – general symmetric
sparse matrices and band sparse symmetric matrices. The test matrices are produced
using a specially created generator of symmetric matrices called MATGEN. This
generator allows to generate matrices with a given size, given sparsity and fixed
largest and smallest eigenvalue (fixed condition number). All other eigenvalues are
chosen to be randomly distributed. Using MATGEN-program it is also possible to
put a gap of a given size into the spectrum of the matrix. For producing such matrices
in MATGEN Jacobi rotations are used such that the angle of rotation and the place
of appearing the non-zero entrances are randomly chosen. The test matrices used
in our numerical experiments are of size 128, 512, 1000, 1024, and 2000 and have
different number of non-zero elements. Some of the most important parameters of
the matrices are shown in Tables 4.3. The name of matrices contains the size of the
matrix and also a parameter which indicates the sparsity. So, we a able to control
the parallel behaviors of the algorithm for different levels of sparsity and to study the
dependence between the computational time and the size of the matrices.

Implementation on Intel-PARAGON

The numerical tests are performed on an Intel PARAGON machine. The Intel
PARAGON is a particular form of a parallel machine which consists of a set of
independent processors, each with its own memory, capable of operating on its own
data. Each processor has its own program to execute and processors are linked by
communication channels. The PARAGON machine on which our experiments are
performed consists of a mesh-grid of 16 × 4 = 64 nodes. 8 processors are devoted

80 Ivan Dimov

Table 3.4: Test matrices

Name Size Non− zero el. λmin λmax

per row

tr128.min 128 52 1.0000 64.0000
tr512.min 512 178 1.0000 64.0000
tr1000.2min 1000 39 −1.9000 1.0000
tr1024.2min 1024 56 1.0000 64.0000
tr1024.min 1024 322 1.0000 64.0000
tr2000.2min 2000 56 1.0000 64.0000

to the system management (service and I/O processors) while the 56 remain for ap-
plications purposes. An amount of 16 MB of RAM is also available on each node
but approximately 8 to 9 are consumed by OSF so that 7 MB are really available
for the users. Data needed for processing by PARAGON must be shared between
processors by message passing. There are a number of libraries available for message
passing on the PARAGON system. Here we use the proprietary NX message passing
library provided by Intel. It offers the best message passing performance for this sys-
tem. The Task-to-Task communication latency is about 50µs while the bandwidth is
approximately 92 MB/s under OSF.

In this section numerical tests obtained using RMC algorithm are presented. The
code is written in FORTRAN 77 and is performed on Intel PARAGON using p proces-
sors. Each processor executes the same program for n/p number of trajectories, i.e.
- n/p independent realizations of the random variable. At the end the host processor
collects the results of all realizations and computes the average value.

Numerical tests are performed for a large number of test matrices - general sym-
metric sparse matrices and band sparse symmetric matrices produced using MAT-
GEN.

Some information about the computations complexity, speed-up and parallel effi-
ciency of the algorithm is presented in Tables 3.5 – 3.7 as well as on on Figures 3.9
and 3.10.

Tables 3.5 and 3.6 present results for matrices of different size and sparsity when
a small number of Monte Carlo iterations is needed to receive a good accuracy.
Subtables ”a” show the dependence between calculated values and the number of
random trajectories. Subtables ”b” contain an information about the dependence
of the computational complexity, speed-up and parallel efficiency on the number of
processors p.

Table 3.7 presents results for a matrix of size 1024 with a given sparsity (322 non-
zero elements per row) when a large number of iterations are needed (r = 129 for
Table 3.7). Here an information about the computational error, time, speed-up and
parallel efficiency is given. The results for the parallel efficiency are not very good,

Monte Carlo Methods 81

Table 3.5: Resolvent Monte Carlo Method (RMC) for m512.52 (λmin =
1.00000).

a) The solution when the number of trajectories increases.

Number of
trajectories 103 104 105 106

Calculated
λmin 1.0278 0.9958 0.999984 1.000010

b) Implementation on PARAGON (Num. of tr. n = 106). Calculated
λmin = 1.000010.

Number
of nodes 1 2 3 4 5 6 7 8 9 10
Time
(s) 70.75 35.97 24.9 18.3 14.78 12.96 11.49 9.63 8.67 7.68
Speedup
S 1 1.97 2.84 3.86 4.78 5.46 6.16 7.34 8.16 9.21
Efficiency
E 1 0.98 0.95 0.97 0.96 0.91 0.88 0.92 0.91 0.92

82 Ivan Dimov

Table 3.6: Resolvent Monte Carlo Method (RMC) for m1000.39 (λmin =
−1.9000).

a) The solution when the number of trajectories increases.

Number of
trajectories 103 104 105 106

Calculated
λmin −1.9068 −1.9011 −1.90021 −1.900057

b) Implementation on PARAGON (Num. of tr. n = 106). Calculated
λmin = −1.900057.

Number
of nodes 1 2 3 4 5 6 7 8 9 10
Time
(s) 26.72 14.05 10.05 7.97 6.75 5.02 4.51 3.75 3.36 3.30
Speedup
S 1 1.90 2.66 3.35 3.96 5.32 5.921 7.13 7.95 8.11
Efficiency
E 1 0.95 0.89 0.84 0.79 0.89 0.84 0.89 0.88 0.81

Monte Carlo Methods 83

Table 3.7: Resolvent Monte Carlo Method (RMC) for m1024.322 (λmin =
1.0). Parameters of the problem: r=129, l=5, f - unit vector.

a) The solution when the number of trajectories increases.

Number of
trajectories 103 104 105 106

Calculated
λmin 0.9268 0.9865 0.9935 0.9959

b) Implementation on PARAGON (Number of trajectories n = 105).

Number of nodes λmin Time (s) Speed− up Efficiency
1 0.9935 12.896 1 1
2 0.9935 6.896 1.870 0.935
3 0.9954 4.736 2.722 0.907
4 0.9923 3.648 2.722 0.680
5 0.9946 3.616 3.535 0.707
6 0.9966 3.648 3.566 0.707
7 0.9931 3.552 3.535 0.594
8 0.9935 3.104 3.630 0.505
9 0.9964 3.008 4.154 0.453
10 0.9945 2.880 4.287 0.461

84 Ivan Dimov

Table 3.8: Computing time and matrix size

a) Rezults for matrix 128× 128. Number of nonzero elements = 6714.
Exact λmax = 64.0. Parameters: r=47, l=7.

Number of Calculated Time
trajectories λmax s

103 64.1350 0.256
104 63.3300 2.112
105 63.1843 21.600
106 63.189 208.256

b) Rezults for matrix 1000× 1000. Number of nonzero elements = 38748.
Exact λmax = 1.0. Parameters: r=47, l=7.

Number of Calculated Time
trajectories λmax s

103 0.9981 0.128
104 0.9997 1.344
105 1.000051 13.184
106 1.000033 132.288

c) Rezults for matrix 1024× 1024. Number of nonzeroelements = 57538.
Exact λmax = 64.0. Parameters: r=17, l=5.

Number of Calculated Time
trajectories λmax s

103 64.3462 0.256
104 64.1883 1.856
105 64.1724 18.176
106 64.1699 181.504

d) Rezults for matrix 2000× 2000. Number of nonzero elements = 112594.
Exact λmax = 64.0. Parameters: r=17, l=5.

Number of Calculated Time
trajectories λmax s

103 63.9943 0.192
104 64.0050 1.408
105 64.0204 13.312
106 64.0265 133.248

Monte Carlo Methods 85

Table 3.9: Resolvent Monte Carlo Method (RMC) for m1000.39
Exact λmax = 1.0.

l r Calculated T ime
λmax s

2 2 1.0921 0.064
2 5 1.0833 0.064
2 10 1.0773 0.064
2 20 1.0729 0.064

l r Calculated T ime
λmax s

5 2 1.0658 0.128
5 5 1.0338 0.128
5 10 1.0191 0.128
5 20 1.0133 0.128

l r Calculated T ime
λmax s

10 2 1.0599 0.192
10 5 1.0195 0.192
10 10 1.0040 0.192
10 20 0.9983 0.192
10 30 0.9956 0.192

Remarks: 1. The number of trajectories n is 1000.
2. The time is measured during the program implementation on Intel PARAGON
(one processor).

86 Ivan Dimov

2

4

6

8

10

12

2 4 6 8 10 12

SPEEDUP n=128, Non-zero E/R = 52
n=512, Non-zero E/R = 178
n=1000, Non-zero E/R = 39

Figure 3.9
Dependence of the Speedup on the number of processors

for different matrices (the computational time is relatively
large in comparison with communicational time for all matrices;
the number of realizations n for all matrices is relatively large).

because the computational time is very small when a large number of processors
is used. In fact, the computational time is comparable with the time needed for
communications. It means that even for matrices of large size (up to 2000× 2000) it
is not necessary to use a lot of processors. Our results show that the parallel efficiency
increases when the number of random trajectories increases.

Our numerical tests performed for a large number of matrices confirm the in-
dependence of the algorithmic complexity from the size of the matrix. The results
presented on Table 3.8 show that:

• the computational time is almost independent of the size of the matrix;

• a linear dependence between the computational time and the number of the
random trajectories is observed;

• a linear dependence between the computational time and the mean value of the
number of non-zero entries of each row of the matrix is realized.

Some numerical results showing the dependence of the accuracy from the para-
meters r and l are presented on Table 3.9.

Monte Carlo Methods 87

2

4

6

8

10

12

2 4 6 8 10 12

SPEEDUP n=128, Non-zero E/R = 52
n=1024, Non-zero E/R = 56
n=2000, Non-zero E/R = 56

Figure 3.10
Dependence of the Speedup from the number of processors
for different matrices (the computational time is relatively

small in comparison with communicational time for matrices
of size 1024 and 2000 since the number of realizations n
is 10 times smaller than in the case of matrix m128.52).

Figures 3.9, 3.10 present some results for speed-up when different numbers of
processors of Intel PARAGON machine are used. One can see, that when the number
of the random trajectories is large the speed-up is almost linear and it is close to the
best value of the speed-up, i.e. to the value of p (Figure 3.9). When the number of
processors is small (with respect to the computational complexity) the speed-up is
linear. If the number of processors p is large and the computational time is small
the speed-up is not so good (see, Figure 3.10). It may happen for tasks with a very
small computational complexity that such a large number of processors is not needed.
The case of small computational complexity may happen not only because of small
number of non-zero elements per row, but also because of small number of realizations
n needed for realizing the algorithm. The last case is shown on Figure 3.10.

Implementation on CRAY Y–MP C92A

The results for a matrix of size m = 512 are shown in Tables 3.10 - 3.11.
The experimental results show that both IMCI and RMC algorithms give good

88 Ivan Dimov

Table 3.10: Inverse Monte Carlo Iterative algorithm (IMCM) for MS512.2
(λmin = 0.2736). (A general symmetric matrix of size 512.)

a) The number of Markov chains is fixed n = 80.

l Calculated Error,
λmin

2 0.2736 0.0000
3 0.2733 0.0011
4 0.2739 0.0011
5 0.2740 0.0015
10 0.2732 0.0015
50 0.2738 0.0007
100 0.2757 0.0076

b) The number of iterations (number of moves in every Markov chain) l is fixed -
l = 50.

n Calculated Error, CP− time, HWM−
λmin s memory

20 0.2729 0.0026 5.356 1137378
40 0.2742 0.0022 5.396 1137378
60 0.2748 0.0044 5.468 1137378
80 0.2739 0.0011 5.524 1137378
100 0.2736 0.0000 5.573 1137378
500 0.2737 0.0004 6.666 1137378
1000 0.2739 0.0011 8.032 1137378

Remark: The values for CP-time and HWM-memory are for CRAY Y-MP C92A.

Monte Carlo Methods 89

Table 3.11: The number of iterations (number of moves in every Markov
chain) for MS512.2 (λmin = 0.2736) l is small and fixed - l = 4.

n Calculated Error, CP− time, HWM−
λmin s memory

20 0.2737 0.0004 5.296 1137378
40 0.2749 0.0058 ? 1137378
60 0.2754 0.0066 ? 1137378
80 0.2739 0.0011 ? 1137378
100 0.2736 0.0000 ? 1137378
500 0.2737 0.0004 ? 1137378
1000 0.2738 0.0007 5.514 1137378

Remarks:
1. The values of CP-time and HWM-memory are for CRAY Y–MP C92A.
2. ”?” - no estimated CP-time; the values of CP-time are between 5.296 s and 5.514
s.
3. In comparison with case b), CP-time decreases very slowly for more then 10-times
decreasing of the number of moves l.
4. The corresponding NAG-routine for solving the same problem needs CP-time =
5.452 s and HWM-mem = 1 220 676.

90 Ivan Dimov

results even in the case of small values of the parameters r and n.
An information about the vectorizing of the vectorization of the algorithms is

received. This information shows that the studied algorithms are well-vectorized. For
matrices A with well distributed eigenvalues, the RMC algorithm works well, when
the parameter q is not too large. When the largest eigenvalue of the resolvent matrix
(I− qA)−1 is well isolated a small number for the power r is needed (r = 2, . . . , 5). In
this case the number of moves in every Markov chain can also be small (l = 5, . . . , 10)
and the accuracy of calculations is high. In this case the results are not very sensitive
to the value of the parameter q, which controls the speed of convergence of the Monte
Carlo iterative procedure. When r > 35 the results are sensitive to q. This case
occurs place when λ1((I − qA)−1/λ2((I − qA)−1 is approximately equal to 1. In such
a case it is better to apply the IMCI algorithm.

IMCI algorithm is very efficient when the smallest eigenvalue is well isolated. For
example the matrix

C =

-2.0 0.20 0.30 0.40 0.50 0.60 0.70
0.20 -2.0 0.25 0.35 0.40 0.45 0.50
0.30 0.25 -2.0 0.15 0.20 0.25 0.40
0.40 0.35 0.15 -2.0 0.10 0.20 0.30
0.50 0.40 0.20 0.10 -2.0 0.08 0.15
0.60 0.45 0.25 0.20 0.08 -2.0 0.10
0.70 0.50 0.40 0.30 0.15 0.10 -2.0

the results for the smallest eigenvalue obtained after two iterations by matrix C−1

are between −4.349 ∗ 10−2 and −4.385 ∗ 10−2 (the ”exact” value is −4.3649 ∗ 10−2).
In this case the accuracy is high for arbitrary by small power i and number of

moves l in every Markov chain . A good accuracy can by reached for a number
of random trajectories n ∈ [20, 80]. In some cases (for example, for the general
symmetric matrix MS512.2 of size 512) the CP-time is less than the corresponding
CP-time for the NAG-routine when CRAY Y–MP C92A machine is used.

The two-steps power Monte Carlo algorithm has also been applied. It has a good
efficiency when the ratio between the largest eigenvalue and the next eigenvalue is
not ”too close” to 1 for both matrices A and B.

3.6.5 Concluding remarks

Two different parallel and vectorizable Monte Carlo algorithms - RMC and IMCI for
calculating eigenvalues of symmetric matrices have been studied.

The algorithms under consideration are almost optimal from statistical point of
view, i.e the variance of the randon variable, which is equal to the eigenvalue is almost
optimal.

The convergence of RMC algorithm depends on the spectrum of the matrix. The
systematic error is

O

[(
2λ1 + λm

2λ1 + λm−1

)r]
, (3.59)

Monte Carlo Methods 91

where r is the power (or the number of iterations).
When λm ≈ −2λ1 the convergence is very good. It is clear from (3.59) that for

a positive or negative defined matrices the convergence decreases, so that the best
convergence which can be reached is O[(2/3)r]. The studied algorithm has strong
requirements about matrices for which it can be applied: the error from the power
algorithm used on the resolvent matrix determines the value of the of the parameter
r; the error comming from the representation of the resolvent matrix as a series
determines the parameter l. The values of r and l are not independent, since they
determine the binomial coefficients C l

r+l−1 which grow exponentially with l.
The results obtained by RMC for sparce matrices show that:

• the computational time is almost independent from the size of the matrix;

• there is a linear dependence between the computational time and the number
of the random trajectories;

• there is a linear dependence between the computational time and the mean
value of the number of the non-zero entrances of each row of the matrix;

• the speedup is almost linear when the computational time for every processor
is not too small.

For matrices A with ”well distributed” eigenvalues, when the parameter q is ”not
too large” the RMC algorithm works well. When the largest eigenvalue of the resol-
vent matrix (I − qA)−1 is ”well isolated” a small number of the power ”r” is needed
(r = 2, . . . , 5). In this case the number of moves in every Markov chain can be also
small (l = 5, . . . , 10) and the accuracy of calculations is high. In this case the results
are not very sensitive to the value of the parameter q, which controls the speed of
convergence of the Monte Carlo iterative procedure. When r > 35 the results are
sensitive to q. This case takes place when λ1((I − qA)−1/λ2((I − qA)−1 is approxi-
mately equal to 1. In this case it is better to apply the Inverse Monte Carlo iterative
algorithm.

IMCI algorithm is efficient when the smallest eigenvalue is ”well isolated”. In this
case the accuracy is high for arbitrary small power i and number of moves in every
Markov chain l.

92 Ivan Dimov

Chapter 4

MONTE CARLO ALGORITHMS
FOR BOUNDARY-VALUE
PROBLEMS (BVP)

4.1 BVP for Elliptic Equations

There are essentially two approaches to numerically solving elliptic equations. The
first one is the so-called grid approach, while the second one might be called the
grid-free approach. In this section we consider both approaches.

Let Ω ⊂ IRd be a bounded domain with a boundary ∂Ω.
The following notations are used:
x = (x(1), x(2), . . . , x(d)) is a point in IRd;
Dα = Dα1

1 Dα2
2 . . . Dαd

d is an |α| = α1 + α2 + . . . + αd derivative, where Di =
∂/∂x(i), i = 1, . . . , d and Ck(Ω̄) is a space of functions u(x) continuous on Ω̄ such
that Dαu exists in Ω and admits a continuous extension on Ω̄ for every α : |α| ≤ k.

We consider the linear boundary value problem

Lu ≡ ∑

|α|≤2m

aα(x)Dαu(x) = −f(x), x ∈ Ω (4.1)

u(x) = ϕ(x), x ∈ ∂Ω , (4.2)

where L is an arbitrary linear elliptic operator in IRd of order 2m, aα(x) ∈ C∞(IRd)
and the function f(x) belongs to the Banach space X(Ω).

We use the following definition of ellipticity:

Definition 4.1.1 The equation

∑

|α|≤2m

aα(x)Dαu(x) = −f(x)

is called elliptic in a domain Ω if
∑

|α|≤2m

aα(x)ξα1ξα2 . . . ξαd
6= 0 when |ξ| 6= 0

93

94 Ivan Dimov

holds for every point x ∈ Ω. The corresponding operator
∑
|α|≤2m aα(x)Dα is called

elliptic in Ω.

Assume that f(x), ϕ(x), and the boundary ∂Ω satisfy conditions ensuring that
the solution of the problem (4.1), (4.2) exists and is unique [Mi83], [Mi55].

We shall study Monte Carlo algorithms for calculating linear functionals of the
solution of the problem (4.1), (4.2)

J(u) = (h, u) =
∫

Ω
u(x)h(x)dx, (4.3)

where h ∈ X∗(Ω) (X∗(Ω) is the dual functional space to X(Ω)).
For many applications X = L1 and thus X∗ = L∞ , or X = L2, X∗ = L2.
There are two approaches for calculating (4.3). The first approach uses a dis-

cretization of the problem (4.1, 4.2) on a mesh and solves the resulting linear alge-
braic system, which approximates the original problem (4.1, 4.2). This is the so-called
grid Monte Carlo algorithm, or grid walk algorithm. The second approach (grid-free
approach) uses an integral representation for the problem (4.1, 4.2).

4.2 Grid Monte Carlo Algorithm

Consider a regular mesh (lattice) with step-size h in IRd. Let Ωh be the set of all
inner mesh points (γ ∈ Ωh if and only if γ ∈ Ω); ∂Ωh be the set of all boundary mesh
points (γ ∈ ∂Ωh if there exists a neighboring mesh point γ∗ which does not belong to
IRd \ Ω̄) and uh be a function defined on a set of mesh points (a mesh function).

The differential operator L at the mesh point xi ∈ Ωh is approximated by a
difference operator Lh as follows:

(Lhuh)i =
∑

xj∈Pk(xi)

ah(xi, xj)uh(xj) , (4.4)

where ah(xi, xj) are coefficients; and Pk(xi) is a set of mesh points with center in
xi ∈ Ωh called scheme.

Since L is a linear differential operator, after the discretisation of (4.4), the fol-
lowing system of linear equation arises:

Au = b ,

where b = (b1, . . . , bm)T ∈ IRm×1 is an m-dimensional vector and A ∈ IRm×m is an
m×m-dimensional matrix.

4.3 Grid-Free Monte Carlo Algorithms

Consider two approaches for constructing grid-free Monte Carlo algorithms. The first
one consists in obtaining a global integral representation both on the boundary and
on the domain.

Monte Carlo Methods 95

Let us consider the following linear elliptic boundary value problem :

∆u(x)− c2u(x) = −ϕ(x), x ∈ Ω (4.5)

u(x) = ψ(x), x ∈ ∂Ω, (4.6)

where ∆ is the Laplacian and the functions ϕ(x), ψ(x) and the boundary satisfy all
conditions, which provide the existence of a unique solution of the problem (4.5),
(4.6).

From the theory of fundamental solutions it follows that the solution of the prob-
lem (4.5), (4.6) can be represented as the integral equation (3.6) (see, Section 3.1)
[Bi82], [EM82], where

k(x, y) =

cd(x)

sinh[cd(x)]
δ(y − x) , when x ∈ Ω \ ∂Ω

0 , when x ∈ ∂Ω

f(x) =

1

4π

∫ sinh((d(x)− |y − x|)c
|y − x| sinh[cd(x)]

ϕ(y)dy , when x ∈ Ω \ ∂Ω

ψ(x) , when x ∈ ∂Ω

where d = d(x) is the distance from x to the boundary ∂Ω.
It will it be necessary to calculate the functional (4.3), where u is the solution of

the problem (4.5), (4.6) and h is a given function.
This representation permits the use of a random variable for calculating the func-

tional (4.3). Unfortunately, this approach is not successful when one deals with more
complicated operators for which it is impossible to find an integral representation.

The second grid-free Monte Carlo approach is based on use of local integral rep-
resentation of the solution. In this case the Green’s function for standard domains,
lying inside the domain Ω (for example - ball, sphere, ellipsoid) is used.

Consider the elliptic boundary value problem:

Mu = −φ(x), x ∈ Ω, Ω ⊂ IR3 (4.7)

u = ψ(x), x ∈ ∂Ω, (4.8)

where

M =
3∑

i=1

 ∂2

∂x2
(i)

+ bi(x)
∂

∂x(i)

 + c(x).

Define the class of domains A(k,λ).

Definition 4.3.1 The domain Ω belongs to the class A(k,λ) if for any point x ∈ ∂Ω
(from the boundary ∂Ω) the boundary ∂Ω can be presented as a function z3 = σ(z1, z2)
in the neighborhood of x for which σ(k)(z1, z2) ∈ C(0,λ), i.e.

|σ(k)(y)− σ(k)(y′)| ≤ N |y − y′|λ

96 Ivan Dimov

where the vectors y ≡ (z1, z2) and y′ ≡ (z′1, z
′
2) are 2-dimensional vectors, N

is constant and λ ∈ (0, 1].

If in the closed domain Ω̄ ∈ A(1,λ) the coefficients of the operator M satisfy the
conditions bj, c(x) ∈ C(0,λ)(Ω̄), c(x) ≤ 0 and φ ∈ C(0,λ)(Ω) ∩C(Ω̄), ψ ∈ C(∂Ω),
the problem (4.7), (4.8) has an unique solution u(x) in C2(Ω) ∩C(Ω̄).

The conditions for uniqueness of a solution can be found in ([Mi83], p. 179, [Bi82],
p. 79).

We obtain an integral representation of the solution u(x). This representation
allows for the use of the random variable for calculating the functional (4.3).

4.3.1 Local integral representation

We have to estimate the functional (4.3) by means of grid-free Monte Carlo approach.
This approach is based on the use of a local integral representation of the solution u(x)
in the problem (4.7), (4.8). The representation uses the Green’s function approach
for standard domains, lying inside the domain Ω.

The initial step in studying the grid-free Monte Carlo approach is to obtain an
integral representation of the solution in the form:

u(x) =
∫

B(x)
k(x, y)u(y)dy + f(x) (4.9)

assuming that a representation exists.
The iterative Monte Carlo process converges when the condition

‖ K(u) ‖L1= max
x∈Ω

∫

Ω
| k(x, y) | dy ≤ q < 1 (4.10)

holds.
For the existence of the integral representation, (4.9) might be obtained using the

result of C. Miranda [Mi55] taking into consideration that the domain B(x) belongs
to the space A(1,λ) and that the operator M is of elliptic type.

We seek a representation of the integral kernel k(x, y) using Levy’s function and
the adjoint operator M∗ for the initial differential operator M . The following Lemma
holds:

Lemma 4.3.1 Let the components of the vector-function b(x) satisfy the
conditions bj(x) ∈ C(1)(Ω), (j = 1, 2, 3) and div b(x) = 0.

Then the adjoint operator M∗ applied on functions v(x), where v ∈ C2(Ω)
and

∂v(x)

∂x(i)

= v(x) = 0 for any x ∈ ∂Ω, i = 1, 2, 3

has the following form:

Monte Carlo Methods 97

M∗ =
3∑

i=1

 ∂2

∂x2
(i)

− bi(x)
∂

∂x(i)

 + c(x).

P r o o f. Let us show that M∗ is an adjoint operator to M , i.e. we have to prove
that

∫

Ω
v(x)Mu(x)dx =

∫

Ω
u(x)M∗v(x)dx. (4.11)

To prove (4.11) we use the Green’s formulas:

∫

Ω
u(x)

3∑

i=1

∂v(x)

∂x(i)

dx = −
∫

Ω
v(x)

3∑

i=1

∂u(x)

∂x(i)

dx +
∫

∂Ω

3∑

i=1

u(x)v(x)nidxS (4.12)

and

∫

Ω
u(x)∆v(x)dx = −

∫

Ω
gradu(x)grad v(x)dx +

∫

∂Ω
u(x)

3∑

i=1

ni
∂v(x)

∂x(i)

dxS,

where

∆ =
3∑

i=1

∂2

∂x2
(i)

, divb(x) =
3∑

i=1

∂bi(x)

∂x(i)

, gradu(x) ≡
(

∂u(x)

∂x(1)

,
∂u(x)

∂x(2)

,
∂u(x)

∂x(3)

)

and n≡ (n1, n2, n3) is the exterior normal for the boundary ∂Ω.
Taking into consideration that

divb(x) = 0 and
∂v(x)

∂x(i)

= v(x) = 0 for any x ∈ ∂Ω, i = 1, 2, 3,

we have

∫

Ω
v(x)Mu(x)dx =

∫

Ω
v(x) (∆u(x) + b(x)gradu(x) + c(x)u(x)) dx

= −
∫

Ω
grad v(x)gradu(x)dx +

∫

∂Ω
v(x)

3∑

i=1

ni
∂u(x)

∂x(i)

dxS

+
∫

Ω
v(x)b(x)gradu(x)dx +

∫

Ω
v(x)c(x)u(x)dx

= −
∫

Ω
grad v(x)gradu(x)dx +

∫

Ω
v(x)

3∑

i=1

bi(x)
∂u(x)

∂x(i)

dx +
∫

Ω
v(x)c(x)u(x)dx.

On the other hand

98 Ivan Dimov

∫

Ω
u(x)M∗v(x)dx =

∫

Ω
u(x) [∆v(x)− b(x)grad v(x) + c(x)v(x)] dx

= −
∫

Ω
gradu(x)grad v(x)dx +

∫

∂Ω
u(x)

3∑

i=1

ni
∂v(x)

∂x(i)

dxS

−
∫

Ω
u(x)b(x)grad v(x)dx +

∫

Ω
u(x)c(x)v(x)dx

= −
∫

Ω
gradu(x)grad v(x)dx−

∫

Ω
u(x)

3∑

i=1

bi(x)
∂v(x)

∂x(i)

dx +
∫

Ω
u(x)c(x)v(x)dx

= −
∫

Ω
gradu(x)grad v(x)dx +

∫

Ω
v(x)

3∑

i=1

∂(u(x)bi(x))

∂x(i)

dx

−
∫

∂Ω

3∑

i=1

nibi(x)u(x)v(x)dx +
∫

Ω
v(x)c(x)u(x)dx

= −
∫

Ω
gradu(x)grad v(x)dx +

∫

Ω
v(x)

3∑

i=1

bi(x)
∂u(x)

∂x(i)

dx +
∫

Ω
v(x)c(x)u(x)dx.

From the last result there follows the proof of the lemma. ♦
The Levy’s function for the problem (4.7), (4.8) is

Lp(y, x) = µp(R)
∫ R

r
(1/r − 1/ρ)p(ρ)dρ, r ≤ R, (4.13)

where the following notations are used:
p(ρ) is a density function;

r =| x− y |=
(

3∑

i=1

(x(i) − y(i))
2

)1/2

;

µp(R) = [4πqp(R)]−1 ;

qp(R) =
∫ R

0
p(ρ)dρ.

It is clear that Levy’s function Lp(y, x), and the parameters qp(R) and µp(R) depend
on the choice of the density function p(ρ). In fact, the equality (4.13) defines a
family of functions.

We seek a choice of p(ρ) which leads to a representation of type (4.9). More-
over, the kernel of the integral transform should be a transition density function, i.e.
k(x, y) ≥ 0.

From an algorithmic point of view the domain B(x) must be chosen in such a way
that the coordinates of the boundary points y ∈ ∂B(x) could be easily calculated.

Denote by B(x) the ball:

B(x) = BR(x) = {y : r =| y − x |≤ R(x)} (4.14)

Monte Carlo Methods 99

where R(x) is the radius of the ball.
For Levy’s function Lp(y, x) the following representation holds (see, [Mi55]):

u(x) =
∫

B(x)

(
u(y)M∗

y Lp(y, x) + Lp(y, x)φ(y)
)
dy+

+
∫

∂B(x)

3∑

i=1

ni

[(
Lp(y, x)∂u(y)

∂y(i)

− u(y)∂Lp(y, x)

∂y(i)

)
− bi(y)u(y)Lp(y, x)

]
dyS , (4.15)

where n ≡ (n1, n2, n3) is the exterior normal to the boundary ∂T (x).
Formula (4.15) holds for any domain T (x) ∈ A(1,λ) contained in Ω.
Obviously, B(x) ∈ A(1,λ) and therefore for every ball lying inside the domain Ω

the representation (4.15) holds.
Now we express the solution u(x) by Green’s function G(x, y). It is known, that

Green’s function is a solution of the problem:

M∗
y G(x, y) = −δ(x− y), y ∈ Ω \ ∂Ω \ {x},

G(x, y) = 0, y ∈ ∂Ω, x ∈ Ω \ ∂Ω

Green’s function is Levy’s function, Lp(y, x), for which (4.7), (4.8) hold.
Under the condition Lp(y, x) = G(x, y) from (4.15) it is possible to get the

integral representation:

u(x) =
∫

B(x)
G(x, y)f(y)dy −

∫

∂B(x)

3∑

i=1

ni
∂G(x, y)

∂y(i)

u(y)dyS. (4.16)

The representation (4.16) is the basis for the Monte Carlo algorithm.
For achieving this aim it is necessary to have a non-negative integral kernel. Next

we show that it is possible to construct the Levy’s function choosing the density
p(ρ) such that M∗

y Lp(y, x) is non-negative in B(x) and such that Lp(y, x) and its
derivatives vanish on ∂B(x) , i.e.

Lp(y, x) = ∂Lp(y, x)/∂yi = 0 for y ∈ ∂B(x), i = 1, 2, 3.

Lemma 4.3.2 The conditions

M∗
y Lp(y, x) ≥ 0 for any y ∈ B(x)

and

Lp(y, x) = ∂Lp(y, x)/∂y(i) = 0, for any y ∈ ∂B(x), i = 1, 2, 3

are satisfied for

p(r) = e−kr,

where

100 Ivan Dimov

k ≥ max
x∈Ω

| b(x) | +R max
x∈Ω

| c(x) | (4.17)

and R is the radius of the maximal ball B(x) ⊂ Ω̄.

P r o o f. The condition

Lp(y, x) = 0, for any y ∈ ∂B(x)

obviously holds. It follows from (4.13), (4.14), since in case y ∈ ∂B(x), then r = R
and Lp(y, x) = 0.

The condition

∂Lp(y, x)/∂y(i) = 0, for any y ∈ ∂B(x), i = 1, 2, 3

can be checked immediately. Indeed,

∂Lp(y, x)

∂y(i)

=
∂Lp

∂r

∂r

∂y(i)

= µp(R)
∂

∂r

(∫ R

r
(1/r − 1/ρ)p(ρ)dρ

)
∂r

∂y(i)

= µp(R)
∂

∂r

(
1

r

∫ R

r
p(ρ)dρ−

∫ R

r

1

ρ
p(ρ)dρ

)
∂r

∂y(i)

= µp(R)

[
− 1

r2

∫ R

r
p(ρ)dρ +

1

r
(−p(r))−

(
−1

r
p(r)

)]
∂r

∂y(i)

= µp(R)

(
− 1

r2

∫ R

r
p(ρ)dρ

)
∂r

∂y(i)

.

Taking into consideration that

∂r

∂y(i)

=
−(x(i) − y(i))

r

one can get:

∂Lp(y, x)

∂y(i)

= µp(R)
(x(i) − y(i))

r3

∫ R

r
p(ρ)dρ. (4.18)

The last expression vanishes when r = R, i.e. for every boundary point y ∈
∂B(x). Thus we obtain

∂Lp(y, x)/∂y(i) = 0, for any y ∈ ∂B(x), i = 1, 2, 3.

Now calculate M∗
y Lp(y, x). The operator M∗

y has the following form:

M∗
y =

3∑

i=1

 ∂2

∂y2
(i)

−

3∑

i=1

(
bi(y)

∂

∂y(i)

)
+ c(y)

and M∗
y Lp(y, x) has the form:

Monte Carlo Methods 101

M∗
y Lp(y, x) =

3∑

i=1

∂2Lp(y, x)

∂y2
(i)

−

3∑

i=1

(
bi(y)

∂Lp(y, x)

∂y(i)

)
+ c(y)Lp(y, x). (4.19)

The second term is calculated using (4.18), i.e.

3∑

i=1

bi(y)
∂Lp(y, x)

∂y(i)

= µp(R)
3∑

i=1

bi(y)
(x(i) − y(i))

r3

∫ R

r
p(ρ)dρ. (4.20)

Calculate the first term in (4.19). That can be done easily when we use spherical
coordinates:

y(1) − x(1) = r sin θ cos ϕ, y(2) − x(2) = r sin θ sin ϕ, y(3) − x(3) = r cos θ,

where 0 < r < R(x), θ ∈ [0, π) and ϕ ∈ [0, 2π).
Thus the Laplacian

∆y =
3∑

i=1

 ∂2

∂y2
(i)

written in spherical coordinates has the following form ([TS77], p. 282):

∆r,θ,ϕ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r sin2 θ

∂2

∂ϕ2
.

The Levy’s function in spherical coordinates depends on the radius r, (see, (4.13)).
Thus,

∆yLp(y, x) = ∆r,θ,ϕLp(r) =
1

r2

∂

∂r

(
r2∂Lp(r)

∂r

)

= µp(R)
1

r2

∂

∂r
r2 ∂

∂r

(∫ R

r
(1/r − 1/ρ)p(ρ)dρ

)
= µp(R)

1

r2

∂

∂r

(
r2

(
− 1

r2

) ∫ R

r
p(ρ)dρ

)

= µp(R)
(
− 1

r2

)
∂

∂r

∫ R

r
p(ρ)dρ = µp(R)

p(r)

r2
.

Taking into consideration (4.19), (4.20) we obtain:

M∗
y Lp(y, x) = µp(R)

p(r)

r2
− µp(R)c(y)

∫ R

r

p(ρ)

ρ
dρ

+
µp(R)

r2

[
c(y)r +

3∑

i=1

bi(y)
y(i) − x(i)

r

] ∫ R

r
p(ρ)dρ.

Next we prove that M∗
y Lp(y, x) is non-negative for every point of the ball B(x).

Write M∗
y Lp(y, x) in the following form:

102 Ivan Dimov

M∗
y Lp(y, x) =

µp(R)

r2
Γp(y, x),

where

Γp(y, x) = p(r) + c(y)r

(∫ R

r
p(ρ)dρ−

∫ R

r

p(ρ)r

ρ
dρ

)

+
3∑

i=1

bi(y)
y(i) − x(i)

r

∫ R

r
p(ρ)dρ.

It is necessary to show that for all y ∈ B(x) the function Γp(y, x) is non-negative.
From the condition c(y) ≤ 0 it follows that

Γp(y, x) = p(r)−
∣∣∣∣∣c(y)r

(∫ R

r
p(ρ)dρ−

∫ R

r

p(ρ)r

ρ
dρ

)∣∣∣∣∣

+
3∑

i=1

bi(y)
y(i) − x(i)

r

∫ R

r
p(ρ)dρ ≥ 0. (4.21)

So, it is necessary to prove (4.21). For

p(r) = e−kr

we have

p(r) ≥ e−kr − e−kR = k
∫ R

r
p(ρ)dρ.

Choosing

k ≥ max
x∈Ω

| b(x) | +R max
x∈Ω

| c(x) |
one can obtain

p(r) ≥
(
max
x∈Ω

| b(x) | +R max
x∈Ω

| c(x) |
) ∫ R

r
p(ρ)dρ

≥| c(y) | r
∫ R

r
p(ρ)dρ+ | b(y) |

∫ R

r
p(ρ)dρ

≥| c(y) | r
(∫ R

r
p(ρ)dρ−

∫ R

r

p(ρ)r

ρ
dρ

)
+

∣∣∣∣∣
3∑

i=1

bi(y)
y(i) − x(i)

r

∣∣∣∣∣
∫ R

r
p(ρ)dρ. (4.22)

Now (4.21) follows from (4.22). ♦

It follows that the representation (4.9) can be written in the form:

u(x) =
∫

B(x)
M∗

y Lp(y, x)u(y)dy +
∫

B(x)
Lp(y, x)φ(y)dy. (4.23)

The last representation enables the construction of an unbiased estimate for the so-
lution of our problem.

Monte Carlo Methods 103

4.3.2 Monte Carlo algorithms

Simple numerical examples for performing grid and grid-free Monte Carlo algorithms
will now be considered.

Let the operator L in the equation (4.1) be the Laplacian :

L = ∆.

Using a regular discretisation with a step–size h equation (4.1) is approximated by
the following difference equation

∆
(d)
h u = −fh (4.24)

or solved for the i-th point i = (i1, . . . , id)

ui = Lhu +
h2

2d
fi,

where ∆
(d)
h is the Laplace difference operator, and Lh is an averaging operator. For

example, the operator Lh in IR2 is

Lhu =
1

4
[ui−1,j + ui+1,j + ui,j−1 + ui,j+1] =

1

4
Λ1(i, j)

and then (4.24) becomes

uij =
1

4
Λ1(i, j) +

h2

4
fi,j. (4.25)

The matrix form of equations (4.25) has only 2d non-zero elements in every row
and they all are equal to 1

2d
.

The grid Monte Carlo algorithm for solving (4.25) consists in simulating a Markov
chain with initial density p0 which is tolerant to the vector h (see, Definition 2.4.1 in
Section 2.4.4) from the integral (4.3), and the probability pαβ for the transition from
the point α to the next point β is equal to 1

2d
if the point is inside of the domain,

that is ((x(1))α, (x(2))β) ∈ Ωh, and pαβ = 0 for boundary points (the boundary is an
absorbing barrier for the process). Then the random variable whose mathematical
expectation coincides with the solution of the problem is:

θ =
h2

2d

i∗−1∑

i=1

fi + ϕi∗ ,

where fi are values of the function f in the points of the Markov chain, and i∗ is the
point where Markov chain reaches the boundary ∂Ωh

The well known grid algorithm (see, for example, [Sh64] can be described in
pseudo-code notation:

Start at the grid point (x10, x20), i.e. (x(1), x(2)) := (x10, x20)
While (x(1), x(2)) is not at the boundary

104 Ivan Dimov

Move to a neighboring point (x′(1), x
′
(2)) ∈ {(x(1) − h, x(2)),

(x(1) + h, x(2)), (x(1), x(2) − h), (x(1), x(2) + h)} (i.e.(x(1), x(2)) := (x′(1), x
′
(2)))

such that each neighboring is selected with
the same probability p = 1/4

Let (x∗(1), x
∗
(2)) be the final point at the boundary. Then, the searched random

variable is:
θ := u(x∗(1), x

∗
(2)).

In order to compute Eθ, we start n Markov processes of the above kind, delivering
n realizations θ1, . . . , θn of the random variable θ and approximate the solution by
their mean as described above. The behavior of the algorithm is depicted in Figure
4.1.

0 1
0

1

θ2 := u(x∗12, x
∗
22)

θ3 := u(x∗13, x
∗
23)

θ1 := u(x∗11, x
∗
21)

(x10, x20)

Figure 4.1: Grid Monte Carlo algorithm (n trajectories from the initial
point (x10, x20) to the boundary are constructed and the mean value of the
encountered boundary values is computed)

Now consider the grid-free Monte Carlo algorithm based on the local integral
representation of the problem.

First, let us describe the selection algorithm in general case. Suppose that v1(x)
and v2(x) are given functions, 0 ≤ v1(x) ≤ v2(x) and

∫

Ω
v1(x)dx = V1 < ∞,

∫

Ω
v2(x)dx = V2 < ∞,

where Ω ⊂ IR3.

Monte Carlo Methods 105

Consider an algorithm for simulation of the random variable with density function
v2(x)/V2 and simulate other random variable with the density function v1(x)/V1. It
is necessary to give a realization ξ of the random variable with density v2(x)/V2 and
an independent realization γ of the random variable uniformly distributed in (0, 1),
as well as to check the inequality γv2(x) ≤ v1(x). If the last inequality holds, ξ is
the needed realization. Otherwise, the process have to be repeated. The efficiency of
the selection algorithm is measured by E = V1/V2.

A local integral representation (4.23) for the boundary value problem (4.7), (4.8)
is obtained. Comparing (4.9) with (4.23) one can get

k(x, y) =

{
M∗

y Lp(y, x), when x ∈ Ω \ ∂Ω,
0, when x ∈ ∂Ω,

and

f(x) =

{ ∫
B(x) Lp(y, x)φ(y)dy when x ∈ Ω \ ∂Ω,

ψ(x), when x ∈ ∂Ω.

The Monte Carlo procedure for solving this problem can be defined as a ball process.
To ensure the convergence of the process, we introduce the ε-strip of the boundary,
i.e.

∂Ωε = {x ∈ Ω : B(x) = Bε(x)}, where Bε(x) = {y : r =| y − x |≤ ε}.

Consider a transition density function

p(x, y) = k(x, y) = M∗
y Lp(y, x) ≥ 0. (4.26)

This transition density function defines a Markov chain ξ1, ξ2, . . . , ξi such that every
point ξj, j = 1, . . . , i − 1 is chosen on the maximal ball B(xj−1), lying in Ω in
accordance with the density (4.26). The Markov chain stops when it reaches ∂Ωε.
So, ξi ∈ ∂Ωε.

Let us consider the random variable

θ[ξ0] =
i∑

j=0

Qj

∫

B(ξj)
Lp(y, ξj)f(y)dy + ϕ(ξi),

where

Q0 = 1 (4.27)

Qj = Qj−1M
∗
y Lp(ξj, ξj−1)/p(ξj−1, ξj), j = 1, 2, . . . , i, (4.28)

ϕ(ξi) is the value of the boundary function at the last point of the Markov chain ξi.
It is easy to see that the solution of the problem at the point ξ0 can be presented

as
u(ξ0) = Eθ[ξ0]. (4.29)

106 Ivan Dimov

To ensure the convergence of the process we consider the next estimate:

∫ ∫
k(x, y)k(y, z)dydz <

∫
δ(y − z)

∫
δ(z − y)dzdy

=
∫

δ(y − x)dy < 1− ε2

4R2
m

,

where k(x, y) ≥ 0 is defined by (4.26) and Rm is the supremum of all radii of the
spheres lying in Ω.

The above estimate ensures the convergence of the Neumann series and, therefore
of the process (4.28) as well.

Obviously, all non-zero values of Qj are equal to 1 and the problem consists in
simulating a Markov chain with a transition density function p(x, y) in the form (4.26).
Thus, the problem of calculating u(ξ0) is reduced to estimating the expectation (4.29).
The computational problem then becomes one of calculating repeated realizations of
θ[ξ0] and combining them into an appropriate statistical estimator of u(ξ0).

As approximate value of u(ξ0) is set up

θn = 1/n
n∑

s=1

{θ[ξ0]}s,

where {θ[ξ0]}s is the s-th realization of the random variable θ[ξ0] on a Markov chain
with initial point ξ0 and transition density function (4.26).

As it was shown in section 3.1, the probable error for this type of random processes
is

rn = cσ(θ[ξ0])n
−1/2,

where c ≈ 0.6745 and σ(θ[ξ0]) is the standard deviation.
The direct simulation of a random variable with the stationary density func-

tion p(x, y) is unsuitable since the complexity of the expression for M∗
y L(y, x) would

sharply increase the algorithm’s computational complexity. In this case it is advisable
to use the selection algorithm.

Denote by p0(x, y) the transition density function of the Markov chain M∗
y Lp with

c(x) ≡ 0.
It is easy to see, that

p(x, y) ≤ p0(x, y).

The function p0(x, y) satisfies the condition for a transition density function of the
Markov chain.

∫

B(x)
p0(x, y)dy = 1. (4.30)

Indeed,

∫

B(x)
p0(x, y)dy =

∫

B(x)
M∗

y Lp(y, x)

∣∣∣∣∣
c(y)≡0

dy =

Monte Carlo Methods 107

=
∫

B(x)

3∑

i=1

∂2Lp(y, x)

∂y2
(i)

dy −
∫

B(x)

3∑

i=1

(
bi(y)

∂Lp(y, x)

∂y(i)

)
dy.

Apply the Green’s formula (4.12) for the second integral:

∫

B(x)

3∑

i=1

(
bi(y)

∂Lp(y, x)

∂y(i)

)
dy

=
∫

∂B(x)

3∑

i=1

nibi(y)Lp(y, x)dyS −
∫

B(x)
Lp(y, x) div b(y)dy = 0,

because div b(y) = 0 and Lp(y, x)|y∈∂B(x) = 0, where n ≡ (n1, n2, n3) is the

exterior normal to the boundary ∂B(x).
Calculate the first integral using spherical coordinates:

∫

B(x)

3∑

i=1

∂2Lp(y, x)

∂y2
(i)

dy

=
∫ R

0

∫ π

0

∫ 2π

0

r2 sin θ

4πqp(R)

1

r2

∂

∂r
r2 ∂

∂r

(∫ R

r
(1/r − 1/ρ)p(ρ)dρ

)
drdθdϕ

=
1

qp(R)

∫ R

0

∂

∂r
r2 ∂

∂r

(∫ R

r
(1/r − 1/ρ)p(ρ)dρ

)
dr

=
1

qp(R)

(
r2 ∂

∂r

∫ R

r
(1/r − 1/ρ)p(ρ)dρ

)∣∣∣∣∣
r=R

r=0

=
1

qp(R)
(−1)

∫ R

r
p(ρ)dρ

∣∣∣∣∣
r=R

r=0

=
qp(R)

qp(R)
= 1.

Thus, we proved (4.30).
The function p0(x, y) can be expressed in Cartesian coordinates as

p0(x, y) =
µp(R)

r2

[
p(r) +

3∑

i=1

bi(y)
y(i) − x(i)

r

] ∫ R

r
p(ρ)dρ.

Taking into consideration that

dy1dy2dy3 = r2 sin θdrdθdϕ and y(i) − x(i) = rwi, i = 1, 2, 3

one can write:

p0(r,w) = µp(R) sin θ

[
p(r) +

3∑

i=1

bi(x + rw)wi

] ∫ R

r
p(ρ)dρ,

or

p0(r,w) =
sin θ

4πqp(R)

[
p(r) +

3∑

i=1

bi(x + rw)wi

] ∫ R

r
p(ρ)dρ.

108 Ivan Dimov

Here w≡ (w1, w2, w3) is an unique isotropic vector in IR3, where w1 = sin θ cos ϕ,
w2 = sin θ sin ϕ and w3 = cos θ.

Now write p0(r,w) in the following form:

p0(r,w) = p0(r)p0(w/r),

where

p0(r) =
p(r)

qp(R)
=

ke−kr

1− e−kR

is a density function and

p0(w/r) =
sin θ

4π

[
1 +

| b(x + rw) | cos(b,w)

p(r)

∫ R

r
p(ρ)dρ

]

is a conditional density function.
In [ENS84] it is proved that E ≥ 1

2
for the same density function and for the

boundary value problem in IRd(d ≥ 2).
In [Di89] a majorant function hr(w) for p0(w/r) was found and the following

theoretical result for the algorithm efficiency of the selection grid-free Monte Carlo
algorithm was proved:

E ≥ 1 + α

2 + α
, (4.31)

where

α =
maxx∈Ω | c(x) | R
maxx∈Ω | b(x) | ,

and R is the radius of the maximal sphere lying inside Ω.
The following result holds

Theorem 4.3.1 For the algorithm efficiency of the selection grid-free Monte Carlo
algorithm the inequality:

E ≥ 1 + α

2 + α− εR

, 0 < εR =
1

ekR
< 1,

holds, when the majorant function

hr(w) =
sin θ

4π

[
1 +

maxx∈Ω | b(x) |
p(r)

∫ R

r
p(ρ)dρ

]

is used.

P r o o f. Estimate the conditional density function p0(w/r):

p0(w/r) =
sin θ

4π

[
1 +

| b(x + rw) | cos(b,w)

p(r)

∫ R

r
p(ρ)dρ

]

Monte Carlo Methods 109

≤ sin θ

4π

[
1 +

B

p(r)

∫ R

r
p(ρ)dρ

]
= hr(w), B = max

x∈Ω
| b(x) | .

On the other hand

hr(w) =
sin θ

4π

[
1 +

B

p(r)

∫ R

r
p(ρ)dρ

]
=

sin θ

4π

[
1 +

B

k
(1− e−k(R−r))

]

=
sin θ

4π

[
1 +

B

k

(
1− ekr

ekR

)]
≤ sin θ

4π

[
1 +

B

k

(
1− 1

ekR

)]
= H(w). (4.32)

The functions hr(w) and H(w) are majorants for the p0(w/r). For the efficiency
of the selection Monte Carlo algorithm in the case when c(y) ≡ 0 one can obtain:

E =

∫ 2π
0

∫ π
0 p0(w/r)dθdϕ

∫ 2π
0

∫ π
0 H(w)dθdϕ

=
1

1 + B
k

(
1− 1

ekR

)

=
k

k + B(1− 1
ekR)

=
B + R maxx∈Ω | c(x) |

2B + R maxx∈Ω | c(x) | − B
ekR

=
1 + α

2 + α− εR

,

where

k = B + R max
x∈Ω

| c(x) |, (see (4.17)),

α =
maxx∈Ω | c(x) | R

B
and εR =

1

ekR
.

Taking into consideration (4.32) , one can get

E ≥ 1 + α

2 + α− εR

, (4.33)

when the majorant function hr(w) is used. This completes the proof.
It is clear that if εR → 0 then the result (4.31) follows. ♦

Denote by p̄(x, y) the following function:

p̄(x, y) =
p(x, y)

V
, where

∫

B(x)
p(x, y)dy = V < 1,

This is a density function in the case when c(y) 6= 0.
The function p(x, y) can be expressed in spherical coordinates as:

p(r,w) =
sin θ

4πqp(R)
×

×
[
p(r) +

(
3∑

i=1

bi(x + rw)wi + c(x + rw)r

) ∫ R

r
p(ρ)dρ− c(x + rw)r2

∫ R

r

p(ρ)

ρ
dρ

]
.

110 Ivan Dimov

The following inequalities hold:

p(r,w) ≤ p0(r,w) ≤ p(r)

qp(R)
hr(w) (4.34)

=
sin θ p(r)

4πqp(R)

[
1 +

maxx∈Ω | b(x) |
p(r)

∫ R

r
p(ρ)dρ

]
≡ h(r,w).

It is easy to prove that in the case when h(r,w) is a majorant of the function
p(r,w) the efficiency of the selection algorithm is

E ≥ V
1 + α

2 + α− εR

.

This estimation follows from Theorem 4.3.1 and (4.34). Clearly, the efficiency E
depends on the norm of the kernel k(x, y), because p(x, y) = k(x, y).

In the selection algorithm it is necessary to simulate a random variable η with a
density

p̄r(w) = 1 +

[| b(x + rw) | cos(b,w) + c(x + rw)r

p(r)

]
×

×
∫ R

r
p(ρ)dρ− c(x + rw)r2

p(r)

∫ R

r

p(ρ)

ρ
dρ.

Since

p̄r(w) ≤ 1 +
B

p(r)

∫ R

r
p(ρ)dρ = h(r)

the function h(r) is a majorant for the selection algorithm.
Here a Monte Carlo algorithm for the selection algorithm is described:
Consider a point x ∈ Ω with the initial density p(x). Suppose that p(x) is tolerant

to g(x).

Algorithm 4.3.1 :
Grid-free Monte Carlo Algorithm
1. Calculate the radius R(x) of the maximal sphere lying inside Ω and having

center x.
2. Calculate a realization r of the random variable τ with the density

p(r)

qp(R)
=

ke−kr

1− e−kR
. (4.35)

3. Calculate the function

h(r) = 1 +
B

p(r)

∫ R

r
p(ρ)dρ = 1 +

B

k
(1− e−k(R−r)).

4. Construct independent realizations wj of an unique isotropic vector in IR3.
5. Construct independent realizations γj of an uniformly distributed random

variable in the interval [0, 1].

Monte Carlo Methods 111

6. Calculate the parameter j0, given by

j0 = min{j : h(r)γj ≤ p̄r(wj)},
and stop the execution of the steps 4 and 5. The random vector wj0 has the density
p̄r(w).

7. Calculate the random point y, with a density p̄r(w), using the following for-
mula:

y = x + rwj0 .

The value r =| y − x | is the radius of the sphere lying inside Ω and having center at
x.

8. Stop the algorithm when the random process reaches the ε - strip ∂Ωε, i.e.
y ∈ ∂Ωε. The random variable is calculated. If y∈̄∂Ωε then the algorithm has to be
repeated for x = y.

An illustration of the considered grid-free algorithm is given on Figure 4.2.

0 1
0

1

(x10, x20)

ε-strip

θ1 := u(x∗11, x
∗
21)

θ2 := u(x∗12, x
∗
22)

Figure 4.2: Grid-free Monte Carlo algorithm.

It is clear that the algorithmic efficiency depends on the expectation of the position
of the point y. The location of y depends of the random variable τ with a density
(4.35). When the random point is near to the boundary of the ball, the process goes
to the boundary of the domain ∂Ωε quickly. So, it will be important to have an
estimate of the mathematical expectation of τ .

One can calculate that

112 Ivan Dimov

Eτ =
∫ R

0
r

p(r)

qp(R)
dr =

∫ R

0

rke−kr

1− e−kR
dr =

1

k
+

R

1− ekR
.

Obviously, the sequentional algorithmic efficiency depends of the product kR (
where R is the radius of the maximal ball, lying inside of the domain Ω for the
starting point of the random process). Therefore, the computational results given in
the next section are performed for different values of the product kR.

4.3.3 Parallel implementation of the grid-free
algorithm and numerical results

It is well known that Monte Carlo algorithms are well suited for parallel architec-
tures. In fact, if we consider the calculation of a trajectory as a single computational
process, it is straightforward to regard the Monte Carlo algorithm as a collection of
asynchronous processes evolving in parallel. Clearly, MIMD (multiple instruction,
multiple data) - machines are the ”natural” hardware platform for implementing
such algorithms; it seems to be interesting to investigate the feasibility of a parallel
implementation on such type of machines. There are two main reasons:

• since Monte Carlo algorithms are many times used from, within or in conjunc-
tion with more complex and large existing codes (usually written in FORTRAN,
C), the easiness in programming makes the use of these machines very attrac-
tive;

• the peak performance of every processor of these machines is usually not very
good, but when a large number of processors is efficiently used a high general
computational performance can be realized.

The MIMD computer used for our tests is a IBM SP1 with 32 processors. The
environment for parallel programming is ATHAPASCAN which is developed by the
research group on Parallel algorithms in LMC/IMAG, Grenoble. ATHAPASCAN
environment is developed using C-language and a special library for message passing
which is similar to well - known MPI-Message Passing Interface and PVM-Parallel
Virtual Machine. ATHAPASCAN allows to distribute the computational problem
on different type of processors or/and computers. This environment provides use of
dynamic distribution of common resources and has a high level of parallel efficiency
if the numerical algorithm is well parallelized. (For more information, see, ([Pl94]).

In the previous section a general description of the Monte Carlo algorithm for the
selection algorithm has been provided. Note that, in the case of an implementation
on a sequential computer, all the steps of the algorithm and all the trajectories are
executed iteratively, whereas on a parallel computer the trajectories can be carried
concurrently.

Example. A numerical examples are considered. The example deals with the
following problem

Monte Carlo Methods 113

3∑

i=1

 ∂2u

∂x2
(i)

+ bi(x)
∂u

∂x(i)

 + c(x)u = 0, in Ω = [0, 1]3.

Note that the cube Ω = [0, 1]3 does not belong to the A(1,λ), but this restriction
is not important for our algorithm since an ε-strip of the domain Ω is considered. In
fact now we consider another domain Ωε which belongs to the class A(1,λ).

The boundary conditions for the example are:

u(x(1), x(2), x(3)) = ea1x(1)+a2x(2)+a3x(3) , (x(1), x(2), x(3)) ∈ ∂Ω.

In our tests

b1(x) = a2a3(x(2) − x(3)), b2(x) = a3a1(x(3) − x(1)), b3(x) = a(1)a2(x(1) − x(2))

(thus, the condition div b(x) = 0 is valid) and

c(x) = −(a2
1 + a2

2 + a2
3),

where a1 , a2 , a3 are parameters.
The problem is solved using selection grid-free Monte Carlo algorithm.

We consider three cases for the coefficients:

• the first case when

a1 = 0.25 , a2 = 0.25 , a3 = 0.25 and k ∗R = 0.101;

• the second case when

a1 = 0.5 , a2 = 0.5 , a3 = 0.5 and k ∗R = 0.40401;

• the third case

a1 = −1 , a2 = −1 , a3 = −1 and k ∗R = 1.61603.

Four different ε-strip are used:

ε = 0.01, 0.05, 0.1, 0.3.

The results of evaluating the linear functional (3.7) for the above mentioned pa-
rameters and functions are presented in Figures 4.3 - 4.5, the case when

h(x) = δ[(x(1) − 1/2), (x(2) − 1/2), (x(3) − 1/2)].

The efficiency of the selection grid-free Monte Carlo does not depend on the num-
ber of trajectories (see, Table 4.1). The result of selection efficiency confirms our
corresponding theoretical result.

114 Ivan Dimov

Table 4.1: Selection efficiency and number of the steps to the boundary
domain.

Epsilon strip k ∗R No of steps Selection efficiency

0.01 0.101 36− 37 0.99
0.01 0.40401 35− 36 0.97123
0.01 1.61603 43− 44 0.91071

0.05 0.101 17− 18 0.99
0.05 0.40401 17− 18 0.9596
0.05 1.61603 20− 21 0.85829

0.10 0.101 8− 9 0.9887
0.10 0.40401 9− 10 0.95371
0.10 1.61603 12− 13 0.83596

0.30 0.101 1− 2 0.97
0.30 0.40401 2− 3 0.92583
0.30 1.61603 2− 3 0.75561

Remarks:

1. The number, which starts generator is 653;

2. The number of realizations of the random ball process is 600.

Monte Carlo Methods 115

1.35

1.4

1.45

1.5

1.55

1.6

50 100 150 200 250 300 350 400 450 500

S
 o

 l
u

t i
 o

 n

Number of random walk ball processes

 Fig.1. Monte Carlo solution in the first case

 Exact solution=1.45499
M.C. sol. for eps-strip=0.01
M.C. sol. for eps-strip=0.05
M.C. sol. for eps-strip=0.1
M.C. sol. for eps-strip=0.3

1.9

2

2.1

2.2

2.3

2.4

2.5

50 100 150 200 250 300 350 400 450 500

 S
 o

 l
u

t i
 o

 n

Number of random walk ball processes

 Fig.2. Monte Carlo solution in the second case

Exact solution=2.117
M.C. sol. for eps-strip=0.01
M.C. sol. for eps-strip=0.05
M.C. sol. for eps-strip=0.1
M.C. sol. for eps-strip=0.3

Figure 4.3
Monte Carlo solution in the first case.

Figure 4.4
Monte Carlo solution in the second case.

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300 350 400 450 500

 S
 o

 l
u

t i
 o

 n

Number of random walk ball processes

 Fig.3. Monte Carlo solution in the third case

Exact solution =0.22313
M.C. sol. for eps-strip=0.01
M.C. sol. for eps-strip=0.05
M.C. sol. for eps-strip=0.1
M.C. sol. for eps-strip=0.3

Figure 4.5
Monte Carlo solution in the third case.

The efficiency of the presented grid-free algorithm is studied in the case when

h(x) = δ[(x(1) − 1/4), (x(2) − 1/4), (x(3) − 1/4)],

h(x) = δ[(x(1) − 1/2), (x(2) − 1/2), (x(3) − 1/2)],

respectively.
We investigate the parallel efficiency for the following values of the coefficients:

a1 = 1 , a2 = −0.5 , a3 = −0.5 and ε− strip = 0.01 , 0.05 , 0.15.

4.3.4 Concluding remarks

• An iterative Monte Carlo algorithm using Green’s function is presented and
studied. It is proved that the integral transformation kernel in local integral
presentation can be used as transition density function in the Markov chain. An

116 Ivan Dimov

algorithm called ball process is presented. This algorithm is a grid-free Monte
Carlo algorithm and uses the so-called selection.

• One of the advantages of the grid-free Monte Carlo algorithm is that it has
the rate of convergence (|log rn|/r2

n) (where rn is the statistical error) which is
better than the rate r−3

n of the grid algorithm. This means that the same error
can be reached with a smaller number of trajectories.

• It is preferable to use the selection algorithm when it is difficult to calculate the
realizations of the random variable directly.

• The studied algorithm has high parallel efficiency. It is easily programmable
and parallelizable.

• The tests performed show that Monte Carlo algorithms can be efficiently im-
plemented on MIMD-machines.

4.4 Adjoint Formulation for Convection-diffusion

Problem

The problem of calculating the functional (4.3), where u is a solution of (4.1), (4.2)
includes many boundary value problems as well.

Consider the problem of convection-diffusion particle’s transport [ZCM91]:

∂u

∂t
= −

3∑

i=1

vi(x, t)
∂u

∂x(i)

+
3∑

i=1

µi
∂2u

∂x(i)
2

+ E(x, t)− σu,

where x ≡ (x(1), x(2), x(3)) ∈ Ω and t ∈ [0, T] with the boundary conditions

u(x, 0) = 0;− ∂u

∂x(3)

+ αu = 0, x ∈ ∂Ω.

Following the approach of Sabelfeld [Sa89] we use the substitution

u(x, t) = eαx(3)u(λ1x(1), λ2x(2), λ3x(3), t);

λi =
√

µ/µi

(µ is a given constant)
One can obtain

∂u

∂t
= −

3∑

i=1

ai(x, t)
∂u

∂x(i)

+ µ∆u− b(x, t)u + g(x, t) (4.36)

u(x, 0) = 0,
∂u

∂x(3)

= 0, (4.37)

Monte Carlo Methods 117

where

ai(x, t) = λivi(x(1)/λ1, x(2)/λ2, x(3)/λ3, t), i = 1, 2;

a3(x, t) = λ3v3(x1/λ1, x(1)/λ2, x(3)/λ3, t)− 2µ3αλ3;

b(x, t) = σ(x(1)/λ1, x(2)/λ2, x(3)/λ3, t)− µ3α
2 + αv3(x(1)/λ1, x(2)/λ2, x(3)/λ3, t)

In order to solve this problem by a Monte Carlo algorithm the first step involves
obtaining an integral representation of the solution.

The solution of the problem (4.36), (4.37) can be represented as volume potential
with a kernel u0(x, t, x′, t′):

u(x, t) =

t∫

0

dt′
∫

Ω

u0(x, t, x
′
, t
′
)q(x

′
, t
′
)dx

′
. (4.38)

Suppose u0(x, t, x
′
, t
′
) is a given function from the space L∞ and q(x, t) belongs

to the space L1.
The density q(x,t) satisfies the following equation [Sa89]:

q(x, t) +

t∫

0

dt
′
∫

Ω

k(x
′
, t
′
, x, t)q(x

′
, t
′
)dr

′
= g(x, t), (4.39)

where

k(x′, t′, x, t) =

−
3∑

i=1

(ai − ai
′)[x(i) − x(i)

′ − a′i(t− t′)]
2µ(t− t′)

, Z0

−
3∑

i=1

(ai − a′i)[x(i) − x̂′(i) − â′i(t− t′)]

2µ(t− t′)
Ẑ0

−a3
′[x(3) + x(3)

′ + a3
′(t− t′)]

µ(t− t′)
Ẑ0 + (b− b′)(Z0 + Ẑ0)− (4.40)

ρZ0

[
3∑

i=1

(ai − ai
′)αi/2µ(t− t′)

]
− ρ̂Ẑ0[

3∑

i=1

(ai − ai
′)βi/2µ(t− t′)

−2a3
′β3/(2µ(t− t′))] + (b− b′)(Z0 + Ẑ0),

where

Z0(x, t, x′, t′) =
e
−

∑3

i=1[x(i)−x′
(i)
−αi(t−t′)]

2

4µ(t−t′) −β(t−t′)

[4πµ(t− t′)]3/2
,

118 Ivan Dimov

Ẑ0(x, t, x′, t′) = e
−

∑2

i=1[x(i)−x′
(i)
−ai(x

′,t)(t−t′)]
2

4µ(t−t′) × e
[x(3)+x′

(3)
+a3(x′,t′)(t−t′)]24µ(t−t′)−b(t−t′)

[4πµ(t− t′)]3/2

with
ρ = |x− x′ − a′(t− t′)|, ρ̂ = |x− x̂′ − â′(t− t′)|,

αi = [x− x′i − a′i(t− t′)]/ρ, βi = [x− x̂′i − â′i(t− t′)]/ρ.

The last representation allows us to use Monte Carlo algorithm for solving the
problem since for every fixed point y = (x, t) (4.38) is a finite linear functional of the
type (4.3).

A similar approach is valid when the initial condition u(r, 0) is given as two-
dimensional mesh-function. We deal with noisy data z0

i,j, defined on the mesh ∆ =
∆x(1)

×∆x(2)
, where

∆x(1)
: a = x1,0 < x1,1 < . . . < x1,N = b;

∆r2 : c = x2,0 < x2,1 < . . . < x2,M = d; (4.41)

Suppose
u(x(1), x(2), x(3), 0) = S(x(1), x(2)), (4.42)

where S(x(1), x(2)) is a cubic spline, which satisfies the conditions:

D2,0S(x1,i; x2,j) = 0, i = 0, N ; j = 0, 1, ..., M ;

D0,2S(x1,i; x2,j) = 0, i = 0, 1, ..., N ; j = 0, 1, ..., M ; (4.43)

D2,2S(x1,i; x2,j) = 0, i = 0, 1, ..., N ; j = 0, 1, ..., M ;

(Dp,qf(x1,i; x2,j) =
∂p+q

∂xp
1∂xq

2

f(x(1), x(2))x(1)=x1,i,x2=x2,j
) (4.44)

We use this approach since among the functions f(x(1), x(2)) from the functional

space W 2,2
2 (Ω), the cubic spline S(x(1), x(2)), which satisfies the conditions (4.43)

minimizes the functional [ZKM80]:

J(f) =
∫ b

a

∫ d

c

[
D2,2f(x(1), x(2))

]2
dx(1)dx(2) +

N∑

i=0

ρ−1
i

∫ d

c

[
D0,2f(x1,i, x(2)

]2
dx2+

M∑

j=0

σ−1
j

∫ b

a

[
D2,0f(x(1), x2,j)

]2
dx(1) +

N∑

i=0

M∑

j=0

ρ−1
i σ−1

j (fij − z0
ij)

2 (4.45)

The construction of the spline S(x(1), x(2)) is now reduced to the solution of one-
dimensional smoothing problems. Consider a space of two-dimensional splines S(∆)
in the domain Ω with a mesh ∆ as a tensor product of two spaces

S(∆) = S(∆x(1)
)⊗ S(∆x(2)

). (4.46)

Monte Carlo Methods 119

The basis of the space S(∆) is

Φp(x(1))Ψq(x(2)), p = 0, . . . , N ; q = 0, . . . , M. (4.47)

Any function from S(∆) can be represented in the form

S(x(1), x(2)) =
N∑

p=0

M∑

q=0

z0
pqΦp(x(1))Ψq(x(2)) =

N∑

q=0

Sq(x(1))Ψq(x(2)),

where

Sq(x(1)) =
N∑

p=0

z0
pqΦp(x(1)).

The functions Sq(x(1)) are smoothing splines for smoothing initial data z0
pq on the

lines x(2) = x2,q, q = 0, . . . , M . The function S(x(1), x(2)) is a spline for smoothing
values of Sq(x(1)), which depends on x(1) as a parameter in the nodes of the mesh ∆x(2)

.

Construct the track of this spline S̃p(x(2)) = S(x1,p; x(2)), p = 0, . . . , N giving as initial

data Sq(x1,p), q = 0, . . . , M . It is possible to obtain new values: z0
pq = S̃p(x2,q) =

S(x1,p; x2,q), p = 0, . . . , N . For these values we construct the interpolation spline,
which is a smoothing spline S(x(1), x(2)) for the initial data z0

pq, p = 0, . . . , N ; q =
0, . . . ,M . Now we can obtain an integral representation in the form (4.39) for the
equation (4.36) using the condition (4.42) instead of condition (4.37).

4.5 Stationary Problem of Particle’s Transport

Now we shall show that the grid Monte Carlo algorithm can be considered for solving
the stationary problem of particle transport.

First, consider the stationary problem of particle transport [Ma82]:

µ∇2u(x(1), x(2))− b(x(1), x(2))u = e(x(1), x(2)) or

∇2u(x(1), x(2))− c(x(1), x(2))u(x(1), x(2)) = −f(x(1), x(2)), (4.48)

(x(1), x(2)) ∈ Ω,

where c(x(1), x(2)) = b(x(1), x(2))/µ; f(x(1), x(2)) = e(x(1), x(2))/µ, with the boundary
conditions:

u(x(1), x(2))|∂Ω = g(x(1), x(2)). (4.49)

Consider a regular mesh Ωh with a step h, defined on the domain Ω. Suppose
u ∈ C2(Ω). Since the domain Ω is bounded, the condition u ∈ L1(Ω) is fulfilled.
Obviously, Ωh contains a finite number of nodes. Let the number of nodes be m (if j
is a node number, j = 1, 2, . . . , m). Denote by uj the value of the function u(x(1), x(2))

120 Ivan Dimov

when r1 and x(2) coincide with coordinates of the j-th node. This can always be done
since u is continuous (moreover, u ∈ C2(Ω)).

Discretisation of the problem (4.48) and (4.49) leads to the following system of
linear algebraic equations:

uj =
m∑

l=1

ljlul + fj, j = 1, . . . , m,

or

u = Lu + f. (4.50)

In the last equation:

u =

u1

u2
...

um

; f =

f1

f2
...

fm

and

L =

l11 l12 . . . l1m

l21 l22 . . . l2m
...

lm1 lm2 . . . lmm

.

It is easy to prove that the system (4.51) is equivalent to the following integral
equation:

u(x) =
∫ m

0
l(x, x′)u(x′)dx′+ f(x), (4.51)

where u(x) and f(x) are one - dimensional step - functions and l(x, x′) is a two -
dimensional step - function.

In actual fact , if u(x) = uj for x ∈ Ωj ≡ [j − 1, j], f(x) = fj for x ∈ Ωj and
l(x, x′) = ljl for x ∈ Ωj and x′ ∈ Ωl then the corresponding integral equation can be
written in the form (4.50).

In this case, the grid Monte Carlo algorithm consists in moving from one coefficient
to another of the matrix (4.51) with a transition density function p(xj−1, x(j)) = pj−1,j

which is chosen to be proportional to |lj−1,j|:

pj−1,j = c|lj−1,j| (4.52)

The process terminates when boundary node b is chosen. The matrix L contains
approximately

√
m boundary nodes.

Obviously, a random process can not visit coefficients which are equal to zero.
This fact increases the efficiency of the algorithm.

Monte Carlo Methods 121

Appendix A

Consider the boundary-value problem

∆u(x) = 0, x = (x1, x2, x3) ∈ Ω, (A.1)

and the boundary condition

u(x) = ψ(x), x ∈ ∂Ω. (A.2)

Using the finite-difference technique, one can derive a system of linear equations
whose solution approximates the solution of (A.1). The system depends on the ap-
proximation molecule for the Laplace operator.

Let us consider the usual seven-point approximation molecule. The equation which
approximates (A.1) in the point xi = (i1h, I2h, i3h) is

Λ1(ui)− 6ui = 0, (A.3)

where

Λ1(ui) = u((i1 + 1)h, i2h, i3h) + u((i1 − 1)h, i2h, i3h) + u(i1h, (i2 + 1)h, i3h)
+u(i1h, (i2 − 1)h, i3h) + u(i1h, i2h, (i3 + 1)h) + u(i1h, i2h, (i3 − 1)h),

(A.4)
and h is the mesh size of the discrete domain ∂Ωh. For brevity, in what follows we
assume h to be unity.

Using (A.3) for all terms in (A.4) we obtain

ui =
1

36
[Λ2(ui) + 2Λ1,m(ui) + 6ui] , (A.5)

where

Λ1,m(ui) = u(i1 + 1, i2, i3 + 1) + u(i1 − 1, i2, i3 + 1) + u(i1 − 1, i2, i3 − 1)
+u(i1 + 1, i2, i3 − 1) + u(i1 + 1, i2 + 1, i3) + u(i1, i2 + 1, i3 + 1)
+u(i1 − 1, i2 + 1, i3) + u(i1, i2 + 1, i3 − 1) + u(i1 + 1, i2 − 1, i3)
+u(i1, i2 − 1, i3 + 1) + u(i1 − 1, i2 − 1, i3) + u(i1, i2 − 1, i3 − 1),

(A.6)
and Λ2(u) is obtained from the formula

Λk(ui) = u(i1 + k, i2, i3) + u(i1 − k, i2, i3) + u(i1, i2 + k, i3)

+ u(i1, i2 − k, i3) + u(i1, i2 + k, i3 + k) + u(i1, i2, i3 − k),

when k = 2.
If we use the Taylor formula for terms in Λ1,m(ui) it is easy to construct another

approximation molecule for (A.1) which leads to

Λ1,m(ui) = 12ui. (A.7)

122 Ivan Dimov

Then (A.5) becomes

ui =
1

6
Λ2(ui), (A.8)

which is of the same type as (A.3) but the step in the approximation molecule is 2.
Application of the algorithm described above leads to the following theorem.

Theorem Appendix A.1 . Let xi = (i1, i2, i3) be an arbitrary point in Ωh and k
be the radius of the largest sphere in Ωh with the centre in xi. Then the following
equation holds:

ui =
1

6
Λk(ui). (A.9)

To prove this theorem some preliminary statements are needed.

Lemma Appendix A.1 . For each integer k the following formula holds:

Λk(ui) =
1

6

[
Λk+1(ui) + Λk−1(ui) + Λ̃k(ui)

]
, (A.10)

where

Λ̃k(ui) = u(i1 + k, i2 + 1, i3) + u(i1 + k, i2, i3 + 1) + u(i1 + k, i2 − 1, i3)

+ u(i1 + k, i2, i3 − 1) + u(i1 − k, i2 + 1, i3) + u(i1 − k, i2, i3 + 1)

+ u(i1 − k, i2 − 1, i3) + u(i1 − k, i2, i3 − 1) + u(i1 + 1, i2 + k, i3)

+ u(i1, i2 + k, i3 + 1) + u(i1 − 1, i2 + k, i3) + u(i1, i2 + k, i3 − 1)

+ u(i1 + 1, i2 − k, i3) + u(i1, i2 − k, i3 + 1) + u(i1 − 1k, i2 − k, i3)

+ u(i1, i2 − k, i3 − 1) + u(i1 + 1, i2, i3 + k) + u(i1, i2 + 1, i3 + k)

+ u(i1 − 1, i2, i3 + k) + u(i1, i2 − 1, i3 + k) + u(i1 + 1, i2, i3 − k)

+ u(i1, i2 + 1, i3 − k) + u(i1 − 1, i2, i3 − k) + u(i1, i2 − 1, i3 − k).

The prof of Lemma 1 follows from (A.3) and (A.6).

Lemma Appendix A.2 For an arbitrary integer k it follows that

Λ̃k(ui) =

(k−3)/2∑

l=0

(−1)l
(
12Λk−2l−1(ui)− Λk−2l−1(ui)

)
+ (−1)[k/2]Λ̃1(ui),

k odd,

(k−2)/2∑

l=0

(−1)l
(
12Λk−2l−1(ui)− Λk−2l−1(ui)

)
+ (−1)[k/2]Λ̃0(ui),

k even,

(A.11)

Monte Carlo Methods 123

where [t] means the integer part of t, and

Λk(ui) = u(i1 + k, i2 + 1, i3 − 1) + u(i1 + k, i2 + 1, i3 + 1) + u(i1 + k, i2 − 1, i3 + 1)

+ u(i1 + k, i2 − 1, i3 − 1) + u(i1 − k, i2 + 1, i3 − 1) + u(i1 − k, i2 + 1, i3 + 1)

+ u(i1 − k, i2 − 1, i3 + 1) + u(i1 − k, i2 − 1, i3 − 1) + u(i1 + 1, i2 + k, i3 − 1)

+ u(i1 − 1, i2 + k, i3 − 1) + u(i1 − 1, i2 + k, i3 + 1) + u(i1 + 1, i2 + k, i3 + 1)

+ u(i1 + 1, i2 − k, i3 − 1) + u(i1 − 1, i2 − k, i3 + 1) + u(i1 − 1, i2 − k, i3 − 1)

+ u(i1 + 1, i2 − k, i3 + 1) + u(i1 + 1, i2 − 1, i3 + k) + u(i1 + 1, i2 + 1, i3 + k)

+ u(i1 − 1, i2 + 1, i3 + k) + u(i1 − 1, i2 − 1, i3 + k) + u(i1 + 1, i2 − 1, i3 − k)

+ u(i1 + 1, i2 + 1, i3 − k) + u(i1 − 1, i2 + 1, i3 − k) + u(i1 − 1, i2 − 1, i3 − k).

P r o o f. Using formula (A.7) for each term in Λk−1(ui), we obtain

12Λk−1(ui) = Λ̃k(ui) + Λk−1(ui) + Λ̃k−2(ui)

or

Λ̃k(ui) = Λ̃k−2(ui) + Λk−1(ui) + 12Λk−1(ui), (A.12)

and applying it recursively yields (A.11). ♦

Lemma Appendix A.3 For an arbitrary integer k the following formula holds:

Λk(ui) =

8
(k−3)/2∑

l=0

(−1)lΛk−2l−1(ui) + (−1)[k−2]Λ1(ui), k odd,

8
(k−2)/2∑

l=0

(−1)lΛk−2l−1(ui) + (−1)[k−2]Λ0(ui), k even,

(A.13)

P r o o f. Using the Taylor formula one can derive the approximation formula

Λ1,e(ui) = 8ui, (A.14)

where Λ1,e(ui) = 1
3
Λ1(ui).

Then applying this formula for all terms in Λk−1(ui), we obtain

8Λk−1(ui) = Λ̃k(ui) + Λk−2(ui)

or

Λk(ui) = −8Λk−1(ui) + Λk−2(ui), (A.15)

which leads to (A.13). ♦
P r o o f. of Theorem 1. When k is unity, (A.9) becomes the usual approxima-

tion formula (A.3).
We will prove (A.9) when k = n, provided it holds for all k = 2, 3, . . . , n− 1.

124 Ivan Dimov

From Lemma 1 it follows that

Λn(ui) =
1

6

[
Λn+1(ui) + Λn−1(ui) + Λn(ui)

]
,

and according to the above assumption

Λn(ui) =
1

6

[
Λn+1(ui) + 6ui + Λn(ui)

]
,

and so for k = n, (A.9) becomes

ui =
1

36

[
Λn+1(ui) + 6ui + Λ̃n(ui)

]
. (A.16)

Without any restrictions of generality we assume that n = 2m − 1. So using
Lemmas 2 and 3 we obtain

Λ̃2m−1(ui) =
m−2∑

l=0

(−1)l
[
12Λ2(m−l−1)(ui)− Λ2(m−l−1)(ui)

]
+ (−1)mΛ̃1(ui)

=
m−2∑

l=0

(−1)l[12Λ2(m−l−1)(ui)− 8
m−l−2∑

s=0

(−1)sΛ2(m−2l)−3(ui).

−(−1)m−l−1Λ0(ui)
]
+ (−1)mΛ̃1(ui).

From the definitions follows that

Λ0(ui) = 24ui and Λ̃1(ui) = 24ui,

and from the assumption that
Λj(ui) = 6ui,

when j < n. Then

Λ̃2m−1(ui) =
m−2∑

l=0

(−1)l

[
72ui − 8

m−l−2∑

s=0

(−1)s6ui − (−1)m−l−124(ui)

]
+ (−1)m24ui

= 72ui

m−2∑

l=0

(−1)l − 48ui

m−2∑

l=0

(−1)l
m−l−2∑

s=0

(−1)s −
m−2∑

l=0

(−1)m−124ui

+(−1)m24ui = 24ui,

and (A.16) becomes

ui =
1

36
[Λn+1(ui) + 30ui] or ui =

1

6
Λn+1(ui). (A.17)

The case when k = 2m is similar. ♦
Theorem 1 is used to construct a Monte Carlo method for finding the inner product

of a given vector g with the solution of the system (A.3).
The algorithm is as follows.

Monte Carlo Methods 125

• (i) The start point x0 is selected according to a density permissible for g.

• (ii) Determine the mesh distance dh(x0) from the selected point x0 to the bound-
ary; the next point is selected from among the neighbours on the seven-point
approximation molecule with step dh(x0);

• – if the point is on the boundary, the the process terminates;

• – otherwise the process continues with (ii).

126 Ivan Dimov

Appendix B

Here all the results for the values of interest are summarized.

B.1. Algorithm A (f(x) ≡ 0, p = (c0.5σ(θ)/ε)2)

ET1(A) = τ ((k + 1 + γA)lA) + (n + 1 + γL)lL)
1

4ε

(
c0.5

σ(θ)

ε

)2

,

ETpipe(A) = τ(s + k + lA + γA + (n + 1 + γL)lL)
1

4ε

(
c0.5

σ(θ)

ε

)2

,

ETp(A) = τ ((k + 1 + γA)lA + (n + 1 + γL)lL)
1

4ε
,

ET2np(A) = τ ((k + 1 + γA)lA + 3lL)
1

4ε
,

Spipe(A) =

(
1 +

k + 1 + γA

n + 1 + γL

lA
lL

) /(
1 +

s + k + lA + γA

n + 1 + γL

1

lL

)
,

Sp(A) = p,

S2np(A) = p

(
1 +

n + 1 + γL

k + 1 + γA

lL
lA

) /(
1 +

3

k + 1 + γA

lL
lA

)
,

Ep(A) = 1,

E2np(A) =
1

2n

(
1 +

n + 1 + γL

k + 1 + γA

lL
lA

) /(
1 +

3

k + 1 + γA

lL
lA

)
.

B.2. Algorithm B (f(x) ≡ 0, n = 3, p = (c0.5σ(θ)/ε)2)

ET1(B) = 6τ ((k + 1 + γA)lA + 9lL)

(
c0.5

σ(θ)

ε

)2

,

ETpipe(B) = 6τ(s + k + lA + γA + 9lL)

(
c0.5

σ(θ)

ε

)2

,

ETp(B) = 6τ ((k + 1 + γA)lA + 9lL) ,

ET6p(B) = 6τ ((k + 1 + γA)lA + 5lL) ,

Monte Carlo Methods 127

Spipe(B) =

(
1 +

1

9
(k + 1 + γA)

lA
lL

) /(
1 +

1

9
(s + k + lA + γA)

1

lL

)
,

Sp(B) = p,

S6p(B) = p

(
1 +

9

k + 1 + γA

lL
lA

) /(
1 +

5

k + 1 + γA

lL
lA

)
,

Ep(B) = 1,

E6p(B) =
1

6

(
1 +

9

k + 1 + γA

lL
lA

) /(
1 +

5

k + 1 + γA

lL
lA

)
.

B.3. Algorithm C (f(x) ≡ 0, n = 3, p = (c0.5σ(θ)/ε)2)

ET1(C) = τ ((2k + γA + qA)lA) + (γL + 1)lL) c ln ε

(
c0.5

σ(θ)

ε

)2

,

ETpipe(C) = τ (s + 2k + γA + qA + lA − 1 + (γL + 1)lL) c ln ε

(
c0.5

σ(θ)

ε

)2

,

ETp(C) = τ ((k + γA + qA)lA + (γL + 1)lL) c ln ε,

ET6p(C) = τ ((2k + γA + qA)lA + (γL + 1)lL) c ln ε,

Spipe(C) =

(
1 +

2k + γA + qA

γL + 1

lA
lL

) /(
1 +

s + 2k + γA + qA + lA − 1

γL + 1

1

lL

)
,

Sp(C) = p,

S6p(C) = p

(
1 +

2k + γL + qA

γL + 1

lA
lL

) /(
1 +

k + γA + qA

γL + 1

lA
lL

)
,

Ep(C) = 1,

E6p(C) =
1

6

(
1 +

2k + γL + qA

γL + 1

lA
lL

) /(
1 +

k + γA + qA

γL + 1

lA
lL

)
.

128 Ivan Dimov

Appendix C

Grid Monte Carlo Algorithm for Parix-C

#define p 15

struct task {double x0,y0,h;

int n;

unsigned int iy;} tsk;

LinkCB_t *(to[3]);

int pnr;

void buildBinTree(void)

{ /* establish complete binary tree */

pnr = GET_ROOT() -> ProcRoot -> MyProcID;

if (pnr != 0)

to[0] = ConnectLink((pnr-1)/2, 0,NULL);

if (pnr < p/2) {

to[1] = ConnectLink(2*pnr+1, 0, NULL);

to[2] = ConnectLink(2*(pnr+1),0,NULL);}

}

void broadcast(struct task (*tsk))

{ if (pnr != 0)

RecvLink(to[0], (char *) tsk,

sizeof(struct task));

if (pnr < p/2){

SendLink(to[1], (char *) tsk,

sizeof(struct task));

SendLink(to[2], (char *) tsk,

sizeof(struct task));}

}

void collect(double (*result))

{ double r1, r2;

if (pnr < p/2){

RecvLink(to[1], (char *) &r1,

sizeof(double));

RecvLink(to[2], (char *) &r2,

sizeof(double));

(*result) += r1 + r2;}

if (pnr != 0)

SendLink(to[0], (char *) result,

sizeof(double));

}

Monte Carlo Methods 129

int main(int args, char * arg[])

{ double x0,y0,h,x,y,s;

int n,i,running;

unsigned int time;

buildBinTree();

printf("%d nBT\n",pnr);

if (pnr == 0){

... input tsk.x0,y0,h,n...

... and initial random number tsk.iy ...}

/* broadcast task */

broadcast(&tsk);

x0 = tsk.x0; y0 = tsk.y0;

h = tsk.h; n = tsk.n;

/* compute n/p trajectories */

srand(tsk.iy+pnr); s=0;

for(i=1;i<=n/p;i++){

x=x0; y=y0;

do

switch ((int) (((double)rand())/

RAND_MAX*4)){

case 0: y=y+h; running=y<1; break;

case 1: x=x+h; running=x<1; break;

case 2: y=y-h; running=y>0; break;

default: x=x-h; running=x>0;}

while (running);

s += x+y;}

/* collect results */

collect(&s);

if (pnr == 0)

printf("u(x0,y0)=%f\n", s/n);

}

130 Ivan Dimov

Bibliography

[Ak56] H. Akaike, Monte Carlo method applied to the solution of simultaneous linear
equations, Ann. Inst. Statist. Math. Tokyo, Vol. 7 (1956), pp. 107–113.

[Ak56a] H. Akaike, On optimum character of von Neumann’s Monte Carlo model,
Ann. Inst. Statist. Math. Tokyo, Vol. 7 (1956), pp. 183–193.

[Ba59] N.S. Bachvalov, On the approximate computation of multiple integrals, Vest-
nik Moscow State University, Ser. Mat., Mech., Vol. 4 (1959), pp.
3–18.

[Ba61] N.S. Bachvalov, Average Estimation of the Remainder Therm of Quadrature
Formulas, USSR Comput. Math. and Math. Phys., Vol. 1(1) (1961),
pp. 64–77.

[Ba64] N.S. Bachvalov, On the optimal estimations of convergence of the quadrature
processes and integration methods, Numerical methods for solving dif-
ferential and integral equations Nauka, Moscow, 1964, pp. 5–63.

[BT89] Bertsekas D., P. Tsitsiklis , Parallel and Distributed Computation , Prentice
Hall, 1989.

[Bi82] A.V. Bitzadze, Equations of the Mathematical Physics, Nauka, Moscow,
1982.

[BF80] P. Bradley, B. Fox, Implementing Sobol’s Quasi Random Sequence Generator,
ACM Trans. Math. Software, Vol. 14(1), pp. 88–100.

[CR90] Chauvin B., Rounault A., A Stochastic Simulation for Solving Scalar
Reaction-Diffusion Equations, Adv. Appl. Prob., Vol. 22, 1990, pp. 80–
100.

[Cu49] J.H. Curtiss, Sampling methods applied to differential and difference equations,
Proc. seminar on Sci. Comput. IBM, New York, 1949.

[Cu54] Curtiss J.H., Monte Carlo methods for the iteration of linear operators. J.
Math. Phys., Vol. 32, No 4 (1954), pp. 209 –232.

131

132 Ivan Dimov

[Cu56] Curtiss J.H. A theoretical comparison of the efficiencies of two classical meth-
ods and a Monte Carlo method for computing one component of the solution
of a set of linear algebraic equations., Proc. Symposium on Monte Carlo
Methods , John Wiley and Sons, 1956, pp. 191–233.

[Cut51] R.E. Cutkosky, A Monte Carlo method for solving a class of integral equa-
tions, J. research NBS, 47 (1951), No. 2, pp. 113–115.

[Da93] J. Darlington, Parallel Programming Using Skeleton Functions, Proceedings
of PARLE ’93, LNCS 694 (1993), pp. 146–160.

[DB85] De Boor, Practical guide for splines, Radio i svjaz, Moscow, 1985.

[D88] Delosme J.M., A parallel algorithm for the algebraic path problem, Parallel
and Distributed Algorithms, (Cosnard et all. Eds.) Bonas, France, 1988,
pp. 67–78.

[DS87] Doroshkevich, A, I. Sobol, Monte Carlo evaluation of integrals encountered
in nonlinear theory of gravitational instability, USSR Comput. Math. and
Math. Phys., Vol. 27(10)(1987), pp. 1577–1580.

[Di85] Dimov I.T., ”A Random walk on the mesh squares” - method for the Poisson
equation, Numerical methods and applications, Sofia, 1985, pp. 258-264.

[Di86] Dimov I.T., Minimization of the probable error for Monte Carlo methods.
Application of Mathematics in Technology. Differential equations
and applications. Varna 1986, Sofia 1987, pp. 161–164.

[Di89] Dimov I.T., Efficiency estimator for the Monte Carlo algorithms. Numeri-
cal Methods and Applications, Proc. II Intern. Conf. on Numerical
Methods and Appl. , Sofia, Publ. House of the Bulg. Acad. Sci., Sofia,
1989, pp. 111–115.

[DT89] Dimov I.T., Tonev O.I., Monte Carlo numerical methods with overconvergent
probable error. Numerical Methods and Applications, Proc. II Intern.
Conf. on Numerical Methods and Appl. , Sofia, Publ. House of the Bulg.
Acad. Sci., Sofia, 1989, pp. 116–120.

[DT90] I. Dimov, O. Tonev, Performance Analysis of Monte Carlo Algorithms for
Some Models of Computer Architectures, International Youth Workshop on
Monte Carlo Methods and Parallel Algorithms - Primorsko (Bl.
Sendov, I. Dimov, Eds.), World Scientific, Singapore, 1990, pp. 91–95.

[Di91] Dimov I.T., Minimization of the probable error for some Monte Carlo methods
- Proc. of the Summer School on Mathematical Modelling and Scientific
Computations, 23-28. 09. 1990, Albena, Bulgaria, Sofia, Publ. House of the
Bulg. Acad. Sci., 1991, pp. 159–170.

Monte Carlo Methods 133

[DT92] Dimov I., Tonev O., Criteria Estimators for Speed-up and Efficiency of Some
Parallel Monte Carlo Algorithms for Different Computer Architectures, Proc.
WP & DP’91 (Sofia, April 16-19) , North-Holland Publ. Co., Amster-
dam, 1992, pp. 243–262.

[Di93] I. Dimov , Efficient and Overconvergent Monte Carlo Methods, Adv. in Par-
allel Algorithms, IOS Press, Amsterdam, 1993, pp. 100–111.

[Di93a] I. Dimov, A Monte Carlo Method for Air Pollution Problem, Scien-
tific Computation and Mathematical Modelling, (S. Markov, Edt.),
DATECS Publishing, Sofia, 1993, pp. 59–62.

[DG93] I. Dimov, T. Gurov, Parallel Monte Carlo Algorithms for Calculation Inte-
grals, Proc. WP&DP, (K. Boyanov, Edt.), 1993, Sofia, pp. 426–434.

[DT93] I. Dimov, O. Tonev, Random walk on distant mesh points Monte Carlo meth-
ods, J. of Statistical Physics, Vol. 70(5/6), 1993, pp. 1333–1342.

[DT93a] I. Dimov, O. Tonev, Monte Carlo algorithms: performance analysis for some
computer architectures. J. of Computational and Applied Mathematics,
Vol. 48 (1993), pp. 253–277.

[DK94] I. Dimov, A. Karaivanova, Overconvergent Monte Carlo Methods for Density-
function Modelling Using B-Splines, Adv. in Numerical Methods and
Appl., World Scientific, 1994, pp. 85–93.

[DK94a] I. Dimov, A. Karaivanova, Monte Carlo Parallel Algorithms, Proc. III
Intern. Conf. on Applications of Supercomputers in Engineering -
ASE/93, Comp. Mech. Publ., Elsevier Appl. Sci., London, New York,
1993, pp. 479–495.

[DKKS96] I. Dimov, A. Karaivanova, H. Kuchen, H. Stoltze, Monte Carlo Algorithms
for Elliptic Differential Equations. Data Parallel Functional Approach, Jour-
nal of Parallel Algorithms and Applications, Vol. 9 (1996), pp. 39–65.

[Di94] I Dimov, Efficient and Overconvergent Monte Carlo Methods. Parallel algo-
rithms., Advances in Parallel Algorithms, (I. Dimov, O. Tonev, Eds.),
Amsterdam, IOS Press (1994), pp. 100–111.

[DK96a] Ivan T. Dimov, Aneta N. Karaivanova, A Fast Monte Karlo Method for Ma-
trix Computations, in Iterative Methods in Linear Algebra II, IMACS
Series in Computational and Applied Mathematics (S. Margenov and
P.S. Vassilevski Eds.), 1996, pp. 204–213.

[DK96] I.T.Dimov, A.N.Karaivanova, Iterative Monte Carlo algorithms for linear
algebra problems, First Workshop on Numerical Analysis and Applications,
Rousse, Bulgaria, June 24-27, 1996, in : Numerical Analysis and Its Ap-
plications, Springer Lecture Notes in Computer Science, ser. 1196,
pp. 150–160.

134 Ivan Dimov

[DKY96] I. Dimov, A. Karaivanova and P. Yordanova, Monte Carlo Algorithms for
calculating eigenvalues, Second International Conference on Monte Carlo and
Quasi-Monte Carlo methods in scientific computing, University of Salzburg,
8-12 July, 1996, (to appear in: Proceedings of MC & QMC 96, Springer
Notes in Statistics (H. Niederreiter, P. Hellekalek, G. Larcher and P. Zinterhof,
Eds)), 1996.

[DJV96] I. Dimov, U. Jaekel, H. Vereecken, A Numerical Approach for Determination
of Sources in Transport Equations, J. Computers and Mathematics with
Applications, Vol. 32, No. 5 (1996), pp. 31–42.

[Di88] Dittrich P., A Stochastic Model of a Chemical Reaction with Diffusion,
Probab. Th. Rel. Fields, vol. 79 (1988), pp. 115–128.

[Du56] V. Dupach, Stochasticke pocetni metody, Cas. Pro. Pest. Mat., 81, No 1
(1956), pp. 55–68.

[EA89] El-Amawy A., A Systolic Architecture for Fast Dense Matrix Inversion, IEEE
Transactions on Computers, Vol.C-38, No3 (1989), pp. 449–455.

[Er67] Ermakov S.M., On the admissibleness of Monte Carlo procedures, Dokl.
Acad. Nauk SSSR, Vol. 172(2), pp. 262– 264.

[Er75] Ermakov S.M., Monte Carlo Methods and Mixed Problems, Nauka, Moscow,
1985.

[Er84] Ermakov S.M., On summation of series connected with integral equation.
Vestnik Leningrad Univ. Math. Vol. 16 (1984) pp. 57–63.

[EM82] S.M. Ermakov, G.A. Mikhailov, Statistical Modeling, Nauka, Moscow, 1982.

[ENS84] S.M.Ermakov, V.V.Nekrutkin, A.S.Sipin, Random processes for solving clas-
sical equations of mathematical physics, Nauka, Moscow, 1984.

[EZ60] S.M. Ermakov, V.G. Zolotukhin, Polynomial approximations in the Monte
Carlo method, in Russian: Teoria Veroyatn. i Yeye Primen., 4 (1960),
No. 4, pp. 473–476.

[Fr90] W. Frensley, Rev. Mod. Phys. Vol. 62, 3 (1990).

[GWKD89] M. W. Gery, G. Z. Whitten, J. P. Killus, M. C. Dodge, A photochemical
kinetics mechanism for urban and regional modeling, J. Geophys. Res., Vol.
94 (1989), pp. 12925–12956.

[Go91] S.K. Godunov, Spectral portraits of matrices and criteria of spectrum di-
chotomy, International symposium on computer arithmetic and sci-
entific computation (J. Herzberger and L. Atanasova, eds.), Oldenburg,
Germany, North-Holland (1991).

Monte Carlo Methods 135

[GK58] G. Goertzel, M.H. Kalos, Monte Carlo methods in transport problems,
Progress in nuclear energy, Ser. 1, Phys. and Math., 2 (1958), pp.
315–369.

[GV83] G. H. Golub, C.F. Van Loon, Matrix computations, The Johns Hopkins
Univ. Press, Baltimore, 1983.

[Gu94] Gurov T., Monte Carlo Methods for Nonlinear Equations. Advances in Num.
Methods and Appl., World Scientific, 1994, pp. 127–135

[Ha66] S.Haber, A modified Monte Carlo quadrature, Math. of Comput., 20, No
95 (1966), pp. 361–368 ; Vol. 21, No 99 (1967), pp. 388–397.

[HH57] J.H. Halton, D.C. Handscome, A method for increasing the efficiency of
Monte Carlo integrations, J. Assoc. comput. machinery, Vol. 4 (1957),
No. 3, pp. 329–340.

[HH64] J.M. Hammersley, D.C. Handscomb, Monte Carlo methods, John Wiley &
Sons, inc., New York, London, Sydney, Methuen, 1964.

[HK94] H.Haug, S.W.Koch, Quantum Theory of the Optical and Electronic Properties
of Semiconductors, World Scientific, Singapore, 1994 (3rd ed.).

[HPFF93] High Performance Fortran Forum, High Performance Fortran Language
Specification, Scientific Programming, Vol. 2(1), 1993.

[HKL92] G. Hogen, A. Kindler, R. Loogen, Automatic Parallelization of Lazy Func-
tional Programs, Proceedings of ESOP’92, LNCS 582, pp. 254–268, 1992.

[HPW92] P. Hudak, S. Peyton Jones, P. Wadler (Eds.), Report on the Program-
ming Language Haskell, A Non-Strict Purely Functional Language, SIG-
PLAN Notices 27(5), 1992.

[Hu91] P. Hudak, Para-functional Programming in Haskell, (B.K. Szymanski Edr.)
Parallel Functional Languages and Compilers, Addison-Wesley, 1991.

[Hu93] P. Hudak, Mutable Abstract Datatypes or How to Have Your State and Munge
It Too, Yale Research Report YALEU/DCS/RR-914, 1993.

[HB85] P. Hudak, A. Bloss, The Aggregate Update Problem in Functional Program-
ming Systems, ACM Symp. on Principles of Programming Languages
(1985), pp. 300–314.

[JL89] C.Jacoboni, P. Lugli, The Monte Carlo method for semiconductor device sim-
ulation, Springer-Verlag, 1989.

[JPR88] C.Jacoboni, P.Poli, L.Rota, Solid State Electronics, Vol. 31 (1988), p.
523.

[JR83] C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 1983, p. 645.

136 Ivan Dimov

[Ka50] H. Kahn, Random sampling (Monte Carlo) techniques in neutron attenuation
problems, Nucleonics ,Vol. 6 No 5 (1950), pp. 27–33 ; Vol. 6, No 6 (1950),
pp. 60–65.

[Ka59] M.H. Kalos, Importance sampling in Monte Carlo calculations of thick shield
penetration, Nuclear Sci. and Eng., 2 (1959), No. 1, pp. 34–35.

[KA77] L.V. Kantorovich, G.P. Akilov, Functional analysis, Nauka, Moscow, 1977.

[KLB91] H. Kingdon, D. Lester, G.L. Burn, The HDG-machine: a highly distributed
graph-reducer for a transputer network, Computer Journal, Vol. 34(4)(
1991), pp. 290–301.

[KV78] Kloek, T., van Dijk, Bayesian estimates of equation system parameter. An
application of integration by Monte Carlo, Econometrica, Vol. 46 (1978),
pp. 1–19.

[Ko57] N.M. Korobov, Approximate computation of multiple integrals with the aid of
methods of the theory of numbers, in Russian: Dokl. Acad. Nauk SSSR,
Vol. 115 (1957), No. 6, pp. 1062– 1065.

[Ko59] N.M. Korobov, On the approximate computation of multiple integrals, in
Russian: Vestnik Moskow. State University, Vol. 4 (1959).

[KPS94] H. Kuchen, R. Plasmeijer, H. Stoltze, Efficient Distributed Memory Im-
plementation of a Data Parallel Functional Language, PARLE’94, LNCS
817(1994), Springer Verlag, pp. 464–477.

[Ku93] H. Kuchen, Distributed Memory Implementation of a Data Parallel Functional
Language, PMG report # 76, Chalmers Univ. of Technology, Sweden, 1993.

[Ku94] H. Kuchen, Datenparallele Programmierung von MIMD-Rechnern mit verteil-
tem Speicher, RWTH Aachen, 1994.

[KR92] T.Kuhn, F.Rossi, Physical Review B, Vol. 46, 12 (1992).

[KL78] Kung H.T., C.E.Leiserson, Systolic Arrays for VLSI, Sparse Matrix Pro-
ceeding 1978, SIAM, 1979, pp. 256–282.

[Ku84] Kung S.Y., On Supercomputing with systolic wavefront array processors ,
IEEE Proc. Vol. 72, pp. 867–884, 1984.

[KLL87] Kung S.Y., S.C. Lo, P.S. Lewis, Optimal Systolic Design for the Transitive
Closure and shortest path problems, IEEE Transactions on Computers.

[Ku66] J. Phys. Soc. Japan, Supl., 24, 1966, p. 424.

[LP71] P. Lebwohl, P. Price, Appl. Phys. Lett., Vol 14, 1971, p. 530.

Monte Carlo Methods 137

[LMRS88] Y. Levitan, N. Markovich, S. Rozin, I. Sobol, On Quasi-random Sequences
for Numerical Computations, USSR Comput. math. and Math. Phys.,
Vol. 28(5), pp. 755–759.

[Li89] Lichoded, H., Processing of Monte Carlo estimations for Continual Integrals,
Moscow, Nauka, 1989.

[LKID89] R. Loogen, H. Kuchen, K. Indermark, W. Damm, Distributed Implemen-
tation of Programmed Graph Reduction, PARLE ’89, LNCS 365(1989), pp.
136–157.

[MP84] O.A. Mahotkin, M.I. Pirimkulov, Application of splines for some problems
of statistical modelling, Theory and Practice of Statistical Modelling
(Mikhailov, Edr.), Novosibirsk, Computing Center(1984), pp. 43–53.

[Ma82] G.I. Marchuk, Mathematical modelling in the problem of environment,
Nauka, Moscow, 1982.

[Ma85] G. I. Marchuk, Mathematical modeling for the problem of the environment,
Studies in Mathematics and Applications, No. 16, North-Holland, Am-
sterdam, 1985.

[MGS84] G. J. McRae, W. R. Goodin, J. H. Seinfeld, Numerical solution of the
atmospheric diffusion equations for chemically reacting flows, J. Computa-
tional Physics, Vol. 45, 1984, pp. 1–42.

[M92] Megson G.M., A Fast Faddeev Array, IEEE Transactions on Computers,
Vol. 41, No 12, December 1992, pp. 1594–1600.

[MAD94] G. Megson, V. Aleksandrov, I. Dimov, Systolic Matrix Inversion Using a
Monte Carlo Method, J. of Parallel Algorithms and Appl., Vol. 3, No
3/4 (1994), pp. 311–330.

[MAD94a] G. Megson, V. Aleksandrov, I. Dimov, Systolic Matrix Inversion by Monte
Carlo Method, Proc. 14-rd IMACS World Congress on Computational
and Appl. Math., July 11–15, 1994, Atlanta, USA, Vol. 3., pp. 1371–
1373.

[MAD94b] G.M. Megson, V.N. Aleksandrov, I.T. Dimov, A Fixed Sized Regular Array
for Matrix Inversion by Monte Carlo Method, Adv. in Numerical Methods
and Appl., World Scientific, 1994, pp. 255–264.

[MU49] N. Metropolis, S. Ulam, The Monte Carlo Method, J. of Amer. Statistical
Assoc., 44, (1949), No. 247, pp. 335–341.

[Mi87] G.A. Mikhailov, Optimization of Wieght Monte Carlo methods, Nauka,
Moscow, 1987.

138 Ivan Dimov

[Mi70] G.A. Mikhailov, A new Monte Carlo algorithm for estimating the maximum
eigenvalue of an integral operator, Docl. Acad. Nauk SSSR, 191, No 5
(1970), pp. 993–996.

[Mi83] Mikhailov V.P., Partial differential equations, Moskow, Nauka, 1983.

[Mi55] C. Miranda, Equasioni alle dirivate parziali di tipo ellittico, Springer-Verlag,
Berlin, 1955.

[Mo57] K.W. Morton, A generalization of the antithetic variate technique for evalu-
ating integrals, J. Math. Phys., 36 (1957), No. 3, pp. 289–293.

[Mu56] , Some continuous Monte Carlo methods for the Dirichlet problem, Ann.
Math. Statistics, 27 (1956), No. 3, pp. 569–589.

[NDRJ96] M. Nedjalkov, I. Dimov, F. Rossi, C. Jacoboni, Journal of Mathemat-
ical and Computer Modeling, Vol. 23, N 8/9, (1996).

[NV89] M.Nedjalkov, P.Vitanov, Solid State Electronics, Vol. 32 (1989), pp. 10.

[NV91] M.Nedjalkov, P.Vitanov , COMPEL, Vol. 10, N 4 (1991).

[Ni87] H. Niederreiter, Point Sets and Sequences with Small Discrepancy, Monatsh.
Math., Vol. 104 (1987), pp. 273–337.

[Ni92] H. Niederreiter, Random number generation and Quasi-Monte Carlo Methods.
Number 63 in CBMS-NSF Series in Applied Mathematics. SIAM,
Philadelphia, 1992.

[Ni88] S.M. Nikolski, Quadrature formulas Nauka, Moscow, 1988.

[Pa92] Parsytec GmbH, PARIX Documentation, Aachen, 1992.

[Pe91] Perihelion Software Ltd. The Helios Parallel Operating System, Prentice
Hall, 1991.

[Pl94] B. Plateau, APACHE: Algorithmique Parallele et pArtagede CHargE, Raport
APACHE, Institut IMAG, Grenoble,]1, 1994, pp. 28.

[Qu87] M.J. Quinn, Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, 1987.

[RJN94] F. Rossi, C. Jacoboni, M. Nedjalkov, Semicond. Sci. Technol. 9, pp. 934
(1994).

[RPJ92] F. Rossi, P. Poli, C. Jacoboni, Semicond. Sci. Technol. Vol. 7, pp. 1017
(1992).

[RJP89] L. Rota, C. Jacoboni, P. Poli, Solid State Electronics, Vol. 31 (1989),
p. 523.

Monte Carlo Methods 139

[RJP89a] L. Rota, C. Jacoboni, P. Poli, Solid State Electronics, Vol. 32 (1989),
p. 1417.

[Sa89] K. Sabelfeld, Algorithms of the Method Monte Carlo for Solving Boundary
Value Problems, Nauka, Moscow, 1989.

[SCA93] A.V.S. Sastry, W. Clinger, Z. Ariola, Order-of-evaluation Analysis for
Destructive Updates in Strict Functional Languages with Flat Aggregates,
FPCA’93, ACM, pp. 266-275, 1993.

[SP88] Bl. Sendov, V. Popov, Averaged modui of smoothness, Mir, Moscow, 1988.

[SAK94] Bl. Sendov, A. Andreev, N. Kjurkchiev, Numerical Solution of Polynomial
Equations, Handbook of Numerical Analysis (General Editors: P.G. Ciarlet
and J. L. Lions), Vol. 3), Solution of Equations in Rn (Part 2), (North-
Holland, Amsterdam, N.Y.,1994).

[SKM94] J. Schilp, T. Kuhn, G. Mahler, Physical Review B, Vol. 50, N8, (1994).

[Sh88] J. Shaw, Aspects of Numerical Integration and Summarization, Bayesian
Statistics, Vol. 3 (1988), pp. 411–428.

[Sh64] Shreider Yu.A., Method of Statistical Testing. Monte Carlo method. Else-
vierm Publishing Co., 335 Jan Van Galenstraat, P.O. Box 211, Amsterdam
(Netherlands), 1964.

[Sh66] Shreider Yu.A., The Monte Carlo method. Method of Statistical Testing. Perg-
amon Press Ltd., Ozford, London, Edinburgh, New York, Paris, Frankfurt,
1966.

[SZ97] S. Skelboe, Z. Zlatev, Exploiting the natural partitioning in the numerical
solution of ODE systems arising in atmospheric chemistry, In: ”Numerical
Analysis and Its Applications” (L. Vulkov, J. Wasniewski and P. Yalamov,
Eds.), pp. 458–465, Springer, Berlin, 1997.

[SB93] J. Smetsers, E. Barendsen, Conventional and uniqueness typing in graph
rewrite systems, 13th Conf. on Foundations of Software Technology and
TCS, LNCS, 1993.

[So73] I.M. Sobol, Monte Carlo numerical methods, Nauka, Moscow, 1973.

[So79] I.M. Sobol, On the Systematic Search in a Hypercube, SIAM J. Numerical
Analysis, Vol. 16 (1979), pp. 790–793.

[So89] I.M. Sobol, On Quadratic Formulas for Functions of Several Variables Satis-
fying a General Lipschitz Condition, USSR Comput. Math. and Math.
Phys., Vol. 29(6) (1989), pp. 936 – 941.

140 Ivan Dimov

[So91] I.M. Sobol, Quasi - Monte Carlo Methods, International Youth Workshop
on Monte Carlo Methods and Parallel Algorithms - Primorsko (Bl.
Sendov, I. Dimov, Eds.), World Scientific, Singapore, 1990, pp. 75–81.

[St83] Stewart, L., Bayesian analysis using Monte Carlo integration - a power-
ful methodology for handling some difficult problems, Statistician, Vol. 32
(1983), pp. 195–200.

[St85] Stewart, L., Multiparameter Bayesian inference using Monte Carlo integration
- some techniques for bivariate analysis, in: J.M.Bernardo, M.H. de Groot,
D.V. Lindley and A.F. Smith, eds, Bayesian Statistics, Vol. 2 (North-
Holland, Amsterdam).

[St87] Stewart, L., Hieralhical Bayesian analysis using Monte Carlo integration com-
puting posterior distributions when there are many possible models, Statisti-
cian, Vol. 36 (1987), pp. 211–219.

[SD86] Stewart, L., W. Davis, Bayesian posterior distribution over sets of possible
models with inferences computed by Monte Carlo integration, Statistician,
Vol. 35 (1986), pp. 175–182.

[St94] H. Stoltze, Implementierung einer parallelen funktionalen Sprache mit algo-
rithmischen Skeletten zur Lösung mathematisch-technischer Probleme, Disser-
tation, RWTH Aachen, 1994.

[Ta92] M.D. Takev, On Probable Error of the Monte Carlo Method for Numerical
Integration, Mathematica Balkanica (New Series), Vol. 6 (1992), pp. 231–235.

[Ta83] W. Tatarskii, Sov. Journal Uspehi Phys. Sci. Vol. 139, 4 (1983).

[TN90] Tonev O., Nicolov P., Sabev V., Dimov I., Realization of Monte Carlo al-
gorithms on transputer systems, International Youth Workshop on Monte
Carlo methods and Parallel Algorithms - Primorsko, 1989 (Bl.Sendov,
I.Dimov, Eds.), World Scientific, Singapore, 1990, pp. 91–95.

[TS77] Tikchonov A.N., Samarskii A.A., Equations of the Mathematical Physics.,
Moskow, Nauka, 1977.

[Tr91] L.N. Trefethen, Pseudospectra of matrices, 14th Dundee Biennal Con-
ference on Numerical Analysis (D.F. Griffiths and G.A. Watson, Eds.)
(1991).

[VHL87] Van Dijk, H., J. Hop, A. Louter, An algorithm for the computation of poste-
rior moments and densities using simple importance sampling, Statistician,
Vol. 37 (1987), pp. 83–90.

[VK83] Van Dijk, H., T. Kloek, Monte Carlo analysis of skew posterior distributions:
An illustrative econometric example, Statistician, Vol. 32 (1983), pp. 216–
223.

Monte Carlo Methods 141

[VK85] Van Dijk, H., T. Kloek, Experiments with some alternatives for simple impor-
tance sampling in Monte Carlo integration, in: J. Bernardo, M.H. de Groot,
D.V. Lindley and A.F. Smith, eds, Bayesian Statistics, Vol. 2 (North-
Holland, Amsterdam).

[VNJRA94] P. Vitanov, M. Nedjalkov, C. Jacoboni, F. Rossi, A. Abramo, in: Ad-
vances in Parallel Algorithms, IOS Press, Amsterdam, p. 117 (1994).

[VN91] P. Vitanov, M. Nedjalkov, COMPEL, Vol. 10, No 4, 1991.

[Vl56] V.S.Vladimirov, On the application of the Monte Carlo method to the finding
of the least eigenvalue, and the corresponding eigenfunction, of a linear integral
equation, in Russian: Teoriya Veroyatn i Yeye Primenenie, 1, No 1
(1956), pp. 113–130.

[Vl60] V.S. Vladimirov, On the approximate computation of Wiener integrals, in
Russian: Uspechi Mathem. Nauk, 15, No. 4 (1960), pp. 129–135.

[VS58] V.S. Vladimirov, I.M. Sobol Computation of the least eigenvalue of Peiers’
equation by the Monte Carlo method, in Russian: Vichislit. Mathematika,
3 (1958), pp. 130–137.

[Wa90] P. Wadler, Comprehending monads, Symp. on LISP and Functional Pro-
gramming, pp. 61–78, ACM, 1990.

[Wa87] W.Wagner, Unbased Monte Carlo Evaluation of Certain Functional Integrals,
J. Comput. Phys., Vol. 71, No 1 (1987), pp. 21–33.

[Wa51] W. Wasow, Random walks and the eigenvalues of elliptic difference equations,
J. Research NBS, Vol. 46 (1951), pp. 65–73.

[Wa51a] W. Wasow, On the mean duration of random walks, J. Research NBS, 46
(1951), pp. 462–472.

[Wa51b] W. Wasow, On the duration of random walks, Ann. Math. Statistics,
Vol. 22 (1951), pp. 199–216.

[Wa56] W. Wasow, A note on the inversion of matrices by random walks, MTAC,
5 (1956), No. 38, pp. 78–81.

[W68] J.R. Westlake, A Handbook of Numerical matrix Inversion and Solution of
Linear Equations, John Wiley & Sons, inc., New York, London, Sydney,
1968.

[We16] H. Weyl, Ueber die Gleichverteilung von Zahlen mod Eins, Math. Ann.,
Vol. 77 (3), pp. 313–352.

[ZKM80] Zavjalov, Y., Kvasov, B., Miroshnichenko, V., Methods of spline-functions,
Nauka, Moscow, 1980.

142 Ivan Dimov

[ZCM91] Z. Zlatev, J.Christensen, J, Moth, J. Wasniewski, Vectorizing codes for
studying long-range transport of air pollutants, Math. Comput. Modelling,
Vol. 15, No 8, (1991) pp. 37–48.

[Zl95] Z. Zlatev, Computer treatment of large air pollution models, Kluwer Acad-
emic Publishers, Dordrecht-Boston-London, 1995.

[ZDG96] Z. Zlatev, I. Dimov, K. Georgiev, Three-dimensional version of the
Danish Eulerian Model, Zeitschrift für Angewandte Mathematik
und Mechanik, Vol. 76, (1996) S4, pp. 473–476.

Monte Carlo Methods 143

SYMBOL TABLE

• x = (x(1), x(2), . . . , x(d)) ∈ Ω ⊂ IRd - point in IRd (d-dimensional vector)

• IRd - d-dimensional Euclidean space

• Ω - domains in the Euclidean space

• ∂Ω - boundary of the domain Ω

• dist(x,D) - distance between the point x and the set D

• µ = (ω, ω′) - cos of angle between directions ω and ω′

• t ∈ [0, T] - time

• δ(x) - Dirac’s function

• X - a Banach space of functions

• u∗,X∗ - conjugate function, dual Banach space

• C(Ω) - space of functions continuous on Ω

• C(k)(Ω) - space of functions u for which u(k) ∈ C(Ω)

• Hα(M, Ω) - space of functions for which |f(x)− f(x′)| ≤ M |x− x′|α

• ‖ f ‖Lq= (
∫
Ω f q(x)p(x)dx)1/q - Lq-norm

• Wr(M ; Ω) - a class of functions f(x), continuous on Ω with partially continuous
rth derivatives, such that

|Drf(x)| ≤ M,

where
Dr = Dr1

1 . . . Drd
d

is the rth derivative, r = (r1, r2, . . . , rd), |r| = r1 + r2 + . . . + rd, and Di = ∂
∂x(i)

• I - value of the integral

• J(u) - linear functional

• (h, u) =
∫
Ω h(x)u(x)dx - inner product of functions h(x) and u(x)

• Lu(x) =
∫
Ω l(x, x′)u(x′)dx′ integral transformation (L - integral operator)

• ∆ - the Laplace operator

• A ∈ IRm×m or L ∈ IRm×m - m×m matrices

144 Ivan Dimov

• Au = f - one linear system of equations

• aij or lij - element in the ith row and jth column of the matrix A or L

• xT - transposed vector

• (h, u) =
∑m

i=1 hiui - inner product of vectors h = (h1, h2, . . . , hm)T and u =
(u1, u2, . . . , um)T

• Lk - kth iterate of the matrix L

• δi
j - Kronneker’s symbol

• ξ ∈ Ω - random point in Ω

• θ(ξ) - random variable (r.v.)

• E(θ) - mathematical expectation of r.v. θ

• D(θ) - variance of r.v. θ

• σ(θ) - standard deviation of r.v. θ

• Pr{εk = i} - probability that εk = i

• γ - random number (uniformly distributed r.v. in [0, 1] with E(γ) = 1/2 and
D(γ) = 1/12)

• ξi(i = 1, 2, . . . , n) - realizations (values) of the random point ξ

• θi(i = 1, 2, . . . , n) - realizations (values) of the random variable θ

• p(x) - density (frequency) function

• p(x, y) - transition density function

• F (x) - distribution function

• Ti = (ξ0 → ξ1 → . . . → ξi) - random trajectory

• ξn = 1
n

∑n
i=1 ξi - mean value of n realizations of the r.v. ξ

• rn - probable error defined as a value rn for which

Pr
{
|ξn − J | ≤ rn

}
=

1

2
= Pr

{
|ξn − J | ≥ rn

}

