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Motivation

• The direct methods for solving SLAE require O(n3) sequential steps (e.g.
Gaussian elimination, Gauss-Jordan methods, LU-factorisation) is used;

• ”Classical” Iterative Methods (Jacobi, Gauss-Seidel, SOR, SUR) require
O(kn2) operations;

• Conjugate Gradient methods require O(n2) operations;

• Monte Carlo - O(Nkd) or O(Nk log d); O(n2) or O(n log n) operations for
dense matrix format and O(log n) operations for sparse matrix format.1

1J. Curtiss: 1956; J. Hammersly and D. Handscomb: 1964; D. Knuth: 1964; J.R. Westlake: 1968; I. Sobol:
1973, 1979; S. Ermakov and G. Mikhailov: 1982; M. Kalos and P. Whitlock: 1986; I.D.: 1989, 1991, 2000;
I.D., T. Dimov and T. Gurov: 1997; R. Rubinstein: 1992; I.D. and A. Karaivanova: 1994, 1999; M. Mascagni
and A. Karaivanova: 2000; I.D. and V. Alexandrov: 2001; V. Alexandrov, E. Atanassov and I. D.: 2004; I.D., V.
Alexandrov, S. Branford, and C. Weihrauch: 2006; I.D., V. Alexandrov, R. Papancheva, and C. Weihrauch: 2007
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Formulation of the Monte Carlo Algorithm

Bilinear Forms of Matrix Powers

We are interested in bilinear forms of matrix powers:

(v, Akh). (1)

For x, the solution of a SLAE Bx = b then

(v, x) =

(
v,

k∑

i=0

Aih

)
, (2)

where the Jacobi Over-relaxation Iterative Method has been used to transform
the SLAE into the problem x = Ax + h. In cases where the Neumann series
does not converge a resolvent method can be used.
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Markov Chain Monte Carlo

The random trajectory (chain) Tk of length k starting in the state α0 is defined
as follows:

Tk = α0 → α1 → . . . → αj → . . . → αk, (3)

where αj means the number of the state chosen, for j = 1, . . . , k.

Assume that

P (α0 = α) = pα, P (αj = β|αj−1 = α) = pαβ,

where pα is the probability that the chain starts in state α and pαβ is the
transition probability to state β after being in state α. Probabilities pαβ define
a transition matrix P . We require that

n∑
α=1

pα = 1 and
n∑

β=1

pαβ = 1, for any α = 1, 2, ..., n. (4)
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We will consider a special choice of density distributions pi and pij defined as
follows:

pi =
|vi|
‖ v ‖, ‖ v ‖ =

n∑

i=1

|vi| and pij =
|aij|
‖ ai ‖, ‖ ai ‖=

n∑

j=1

|aij|. (5)
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Monte Carlo Algorithm for Computing Bilinear Forms of
Matrix Powers (v, Akh)

The pair of density distributions (5) defines a finite chain of vector and matrix
entrances:

vα0 → aα0α1 → . . . → aαk−1αk
. (6)

The latter chain induces the following product of matrix/vector entrances and
norms:

Ak
v = vα0

k∏
s=1

aαs−1αs; ‖ Ak
v ‖=‖ v ‖ ×

k∏
s=1

‖ aαs−1 ‖ .

The rule for creating the value of ‖ Ak
v ‖ is the following: the norm of the

initial vector v, as well as norms of all row-vectors of matrix A visited by the
chain (6), defined by densities (5), are included. For such a choice of densities
pi and pij we can prove the following theorem:
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E{hαk
} =

sign{Ak
v}

‖ Ak
v ‖

(
v, Akh

)
. (7)

The standard deviation σ{hαk
} is finite. Since random variable

θ(k) = sign{Ak
v}× ‖ Ak

v ‖ hαk

is an unbiased estimate of the form (v, Akh), (7) can be used to construct a
MC algorithm.

Let us consider N realizations of the Markov chain Tk (3) defined by the pair

of density distributions (5). Denote by θ
(k)
i the ith realization of the random

variable θ(k). Then the value

θ̄(k) =
N∑

i=1

θ
(k)
i = sign{Ak

v} ‖ Ak
v ‖

N∑

i=1

{hαk
}i (8)
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can be considered as a MC approximation of the form (v, Akh). The probability
error of this approximation can be presented in the following form:

R
(k)
N =

∣∣∣(v,Akh)− θ̄(k)
∣∣∣ = cpσ{θ(k)}N−1

2. (9)

In fact, (8) together with the sampling rules using probabilities (5) defines a MC
algorithm. The expression (8) gives a MC approximation of the form (v, Akh)
with a probability error R

(k)
N . Obviously, the quality of the MC algorithm

depends on the behavior of the standard deviation σ{θ(k)}. So, there is a
reason to consider a special class of robust MC algorithms.

We compute the first 10 iterations by Monte Carlo and by simple matrix-vector
multiplication with double precision assuming that the obtained results are
”exact” (they still contain some roundoff errors that are relatively small). The
results of computations are presented on Figure 1. The first impression is that
the results are good.
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Figure 1: Monte Carlo and ”Exact” values
vTAkv

‖v‖ for a random non-balanced

matrix A3 of size 128×128. In all experiments the number N of Markov chains
is 106.
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Figure 2: Relative MC error for values
vTAkv

‖v‖ for a random non-balanced

matrix of size 128× 128. In all experiments the number N of Markov chains is
106.

IMACS MCM 2007 The University of Reading 18-21 June



Applicability and Acceleration Analysis

Robust MC Algorithms

Definition 1. MC algorithm for which the standard deviation does not increase
with increasing of matrix power k is called robust MC algorithm.

Lemma 1. If MC algorithm is robust, then there exist a constant M such
that

lim
k→∞

σ{θ(k)} ≤ M.

It is interesting to answer the question:

• How small could be the probability error? and

• Is it possible to have MC algorithms with zero probability error?
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Interpolation MC Algorithms

Definition 2. MC algorithm for which the probability error is zero is called
interpolation MC algorithm.

Theorem 1. Let

ĥ = {h2
i}n

i=1,

v̄ = {|vi|}n
i=1,

Ā = {|aij|}n
i,j=1.

Then
D{θ(k)} = ‖Ak

v‖
(
v̄, Ākĥ

)
− (v, Akh)2.

Corollary 1. For a perfectly balanced singular stochastic matrix the MC
algorithm defined by density distributions (5) is an interpolation MC algorithm.
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Experimental Results

• IBM p690+ Regatta system cluster of IBM SMP nodes, containing a total
of 1536 IBM POWER5 processors;

• Sun Fire 15K server with 52x0,9GHz UltraSPARC III processors;

• SGI Prism equipped with 8 x 1.5 GHz Itanium II processors and 16 GByte of
main memory.

• Dense and unstructured sparse random matrices of sizes

• n = 1000, n = 5000, n = 10000, n = 15000, n = 20000, n = 40000.

are used.
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Figure 3: Comparison of Robust Monte Carlo algorithm results with the exact
solution for the bilinear form of a dense matrix of size n = 15000.
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Figure 4: Comparison of the Relative MC error for the robust and non-robust
algorithms. Matrices of size n = 15000 are used.

R
(k)
N =

˛̨
˛̨
˛
1

N

NX

i=1

θ
(k)
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Figure 5: The relative MC error for the robust and non-robust algorithms. the
matrix size is n = 15000.
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Figure 6: Comparison of the MC results for bilinear form of matrix powers for
a sparse matrix of size n = 10000 with the exact solution. 5 or 6 Monte Carlo
iterations are enough for solving the system of linear algebraic equations or for
computing the dominant eigenvalue for the robust Monte Carlo.
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Figure 7: Comparison of the MC results for bilinear form of matrix powers for
a sparse matrix of size n = 40000 with the exact solution.
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Concluding Remarks

• We are focused on the computing bilinear form of matrix powers (v, Akh)
as a basic subtask of MC algorithms for solving a class of Linear Algebra
problems.

• We study the applicability and robustness of Markov chain Monte Carlo. The
robustness of the Monte Carlo algorithm with large dense and unstructured
sparse matrices has been demonstrated.

We can conclude that the balancing of the input matrix is very important for
MC computations. A balancing procedure should be performed as an initial
(preprocessing) step in order to improve the quality of Monte Carlo algorithms.
For matrices that are ”close” in some sense to the stochastic matrices the
accuracy of the MC algorithm is very high.
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Questions?

http://www.personal.reading.ac.uk/ sis04itd/
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